Got any suggestions?
We want to hear from you! Send us a message and help improve Slidesgo
Top searches
Trending searches
62 templates
141 templates
biodiversity
78 templates
frankenstein
19 templates
18 templates
55 templates
Coronavirus Presentation templates
Raise awareness about one of the hottest topics of the 21st century by downloading and editing our free ppt templates and google slides themes about coronavirus..
- Calendar & Weather
- Infographics
- Marketing Plan
- Project Proposal
- Social Media
- Thesis Defense
- Black & White
- Craft & Notebook
- Floral & Plants
- Illustration
- Interactive & Animated
- Professional
- Instagram Post
- Instagram Stories
It seems that you like this template!
Premium template.
Unlock this template and gain unlimited access
Register for free and start downloading now
Medicine and healthcare thesis: a scientific explanation of covid-19 and its epidemiology.
Download the Medicine and Healthcare Thesis: A Scientific Explanation of COVID-19 and its Epidemiology presentation for PowerPoint or Google Slides. Taking care of yourself and of those around you is key! By learning about various illnesses and how they are spread, people can get a better understanding of them and...
Omicron COVID-19 Variant Clinical Case
A new variant of COVID-19 has been notified by the World Health Organization and has been named "the Omicron variant". Questions and doubts start to arise and to solve them, there is no better idea than a clinical case with real examples to illustrate any doubt you may have. For...
Stop The Virus! Distance Learning Escape Room
If you are a fan of escape rooms you will love this template that we have created in Slidesgo. It is inspired by these games and features a virus that you have to escape from. The design is creative, with purple background, fun illustrations and sans serif typography. Go solving...
COVID-19 High School Lesson
It's true that COVID-19 has been around for almost a year now, but it's never too late to explain all about this virus and the prevention measures. This new template will be useful for high schools, as it's been designed with an educational purpose in mind. With a color palette...
COVID-19 Explained for Middle School
The pandemic has completely changed the way we live. The youngest have had to adapt without understanding what was going on. If you want to make COVID-19 understandable for your middle school students, we recommend using this editable template from Slidesgo. With it you can explain the symptoms, prevention measures,...
Medicine and Healthcare Thesis Defense: Is Coronavirus Human-Made?
Download the Medicine and Healthcare Thesis Defense: Is Coronavirus Human-Made? presentation for PowerPoint or Google Slides. Congratulations, you have finally finished your research and made it to the end of your thesis! But now comes the big moment: the thesis defense. You want to make sure you showcase your research...
COVID-19 Outbreak Thesis
Several fields of study can benefit from interesting dissertations on how COVID-19 has spread all around the world. Your thesis is about this matter and you need to defend it in front of the assessment committee? Use this presentation during your speech and have your data on the screen while...
COVID-19 Vaccine Breakthrough
Aren't you tired of COVID-19? Great news: vaccines are already here! Use this new editable template to tell your audience all the latest discoveries on the matter. Since blue is the color of safety, we've used it to set the right atmosphere. We've used other resources, such as illustrations of...
COVID-19 Vaccine Breakthrough: Case Investigation and Reporting
The COVID-19 vaccine has improved the pandemic situation. We are gradually returning to our pre-COVID-19 lifestyle. All this has been achieved thanks to the enormous efforts of the scientific community, which has not rested until a remedy has been found. However, new variants of COVID-19 continue to emerge and we...
Norwalk Virus Clinical Case
The best way to understand a disease is through a clinical case. Your knowledge about Norwalk virus, which causes acute gastroenteritis, occurs in outbreaks and is easily transmitted, will be key to prevent it. And this template, with its modern, yet professional and functional design, will be your best ally...
National Influenza Vaccination Week
National Influenza Vaccination Week is a week in December when the importance of getting vaccinated against the flu is emphasized, especially for older people and those who are at more risk for any medical condition. Most people get through the flu just fine, but it can also have dire consequences....
Immunology Breakthrough
The scientific world is continuously making strides in medical research, particularly in the field of immunology. Highlight these achievements with a Google Slides and PowerPoint presentation! Designed with clear blue hues, this template offers a professional and compelling way to share your groundbreaking research, data findings, and innovative treatments. Fully...
Infection by Microorganisms Case Report
Download the "Infection by Microorganisms Case Report" presentation for PowerPoint or Google Slides. A clinical case is more than just a set of symptoms and a diagnosis. It is a unique story of a patient, their experiences, and their journey towards healing. Each case is an opportunity for healthcare professionals...
Create your presentation Create personalized presentation content
Writing tone, number of slides, immunology - bachelor of science in human biology.
Download the "Immunology - Bachelor of Science in Human Biology" presentation for PowerPoint or Google Slides. As university curricula increasingly incorporate digital tools and platforms, this template has been designed to integrate with presentation software, online learning management systems, or referencing software, enhancing the overall efficiency and effectiveness of student...
Flu vs. COVID-19 Infographics
How to tell the difference between the flu and other diseases such as COVID-19? Some of their symptoms are similar, so we think a lot of healthcare workers will agree that people should be informed about this. Help patients or society in general by using these editable infographics. The variety...
Rotavirus Infection Breakthrough
Download the Rotavirus Infection Breakthrough presentation for PowerPoint or Google Slides.Treating diseases involves a lot of prior research and clinical trials. But whenever there’s a new discovery, a revolutionary finding that opens the door to new treatments, vaccines or ways to prevent illnesses, it’s great news. Should there be a...
Infectious Diseases Notebook
Download the Infectious Diseases Notebook presentation for PowerPoint or Google Slides. Taking care of yourself and of those around you is key! By learning about various illnesses and how they are spread, people can get a better understanding of them and make informed decisions about eating, exercise, and seeking medical...
Arbovirus Infections
Download the Arbovirus Infections presentation for PowerPoint or Google Slides. This incredible template is designed to help you create your own marketing plan that is sure to impress your entire team. Using this amazing tool, you'll be able to analyze your target audience, assess your competitors, map out your messaging...
- Page 1 of 10
Register for free and start editing online
We use cookies on this website to enhance your experience. You can find out more about how we use cookies here
Preventing COVID-19: Refresher Presentations for Schools and Childcare Settings
Understanding how COVID-19 is transmitted and ensuring that proper public health measures are in place is important for preventing the spread of COVID-19 in schools and childcare settings. This presentation series provides those working in school and childcare settings a refresher about the public health practices that help prevent and control the spread of COVID-19. Implementing all recommended public health measures is important to help prevent the spread of COVID-19 in your facilities (i.e., no single measure should be relied on by itself). Below you will find links to the recorded presentations as well as a downloadable copy of the presentation slides.
COVID-19 Transmission
An overview of how COVID-19 is spread, measures to reduce the risk of spread and implications for infection prevention and control (IPAC) in schools and child care settings.
- Duration: 9 min
- Updated 3 Sep 2021
- View the full transcript
Presentation
Hand Hygiene
Hand Hygiene: The Importance of Cleaning Hands
- Duration: 8 min
The role of cleaning your hands in preventing the spread of COVID-19 as well as review of the proper technique for cleaning your hands and hand care.
Physical Distancing
Environmental Cleaning
- Duration: 7 min
Considerations for cleaning and disinfecting surfaces in school and child care settings.
PHO Rounds: Inflicted Injuries Among Children and Youth During the Pandemic: A Study Across Two Canadian Provinces
This Public Health Ontario (PHO) Rounds presents the findings of a research program which examined the effect of pandemic policies on violence-related emergency department visits and hospitalizations of children and youth.
Communications
- Media Centre
Don’t have a MyPHO account? Register Now
You must be logged in and have the correct access level to access this product.
Login or Register
- ConnectedCompany.app
- DynamicPowerPoint.com
- SignageTube.com
- SplitFlapTV.com
Coronavirus Tips PowerPoint Template
Mar 28, 2020 | Data Dashboards , DataPoint , DataPoint Real-time Screens , Healthcare
To help with the current coronavirus emergency, we have put together these free coronavirus tips Powerpoint slide templates for you to use. The slides include coronavirus prevention tips, symptoms and instructions on what to do if you have symptoms.
Feel free to adjust the templates based on your local health authority instructions and contact information. Download the templates by providing your name and email address below.
Coronavirus Tips – Symptoms
This slide shows the common coronavirus symptoms and gives patients instructions on what to do if they have symptoms so that they don’t go to the hospital or doctor in a panic and overload the local health system. You can edit this slide or add additional slides to add local phone numbers, websites or other resource information.
Preventing Coronavirus Spread
These next two coronavirus tips slide templates show how to slow the spread of Covid 19 by washing hands frequently, maintaining social distancing, avoiding touching your face, covering your mouth during sneezing and staying home. Once again, you can edit these templates to include information from your local health authority.
nice template
I would like to download and amend the COVID slides please.
Solved over chat. Now you can use the presentation. Good luck with it!
I would like to download the template as well.
Did you sign up Nicole? That should be working. Check your spam folder maybe.
Excellent template , I will use for professional and public presentations.
Great to read. Thanks.
Submit a Comment
Your email address will not be published. Required fields are marked *
- Privacy Overview
- Strictly Necessary Cookies
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.
- Search Menu
- Sign in through your institution
- Advance Articles
- Editors Choice
- Author Guidelines
- Submission Site
- Open Access Options
- Self-Archiving Policy
- Author Resources
- Read & Publish
- Reasons to Publish With Us
- Call For Papers
- About Postgraduate Medical Journal
- About the Fellowship of Postgraduate Medicine
- Editorial Board
- Advertising & Corporate Services
- Journals on Oxford Academic
- Books on Oxford Academic
Article Contents
Introduction, viral life cycle and host cell invasion, disease pathophysiology, asymptomatic phase, invasion and infection of the upper respiratory tract, involvement of the lower respiratory tract and progression to acute respiratory distress syndrome (ards), viral transmission and clinical features, diagnosis and imaging, management strategies, management of sepsis/septic shock, other therapies for covid-19, search for a vaccine.
- < Previous
COVID-19: Current understanding of its Pathophysiology, Clinical presentation and Treatment
- Article contents
- Figures & tables
- Supplementary Data
Anant Parasher, COVID-19: Current understanding of its Pathophysiology, Clinical presentation and Treatment, Postgraduate Medical Journal , Volume 97, Issue 1147, May 2021, Pages 312–320, https://doi.org/10.1136/postgradmedj-2020-138577
- Permissions Icon Permissions
The severe acute respiratory syndrome (SARS) coronavirus-2 is a novel coronavirus belonging to the family Coronaviridae and is now known to be responsible for the outbreak of a series of recent acute atypical respiratory infections originating in Wuhan, China. The disease caused by this virus, termed coronavirus disease 19 or simply COVID-19, has rapidly spread throughout the world at an alarming pace and has been declared a pandemic by the WHO on March 11, 2020. In this review, an update on the pathophysiology, clinical presentation and the most recent management strategies for COVID-19 has been described.
A search was conducted for literature and various articles/case reports from 1997 to 2020 in PUBMED/MEDLINE for the keywords coronavirus, SARS, Middle East respiratory syndrome and mRNA virus.
COVID-19 has now spread globally with increasing morbidity and mortality among all populations. In the absence of a proper and effective antibody test, the diagnosis is presently based on a reverse-transcription PCR of nasopharyngeal and oropharyngeal swab samples. The clinical spectrum of the disease presents in the form of a mild, moderate or severe illness. Most patients are either asymptomatic carriers who despite being without symptoms have the potential to be infectious to others coming in close contact, or have a mild influenza-like illness which cannot be differentiated from a simple upper respiratory tract infection. Moderate and severe cases require hospitalisation as well as intensive therapy which includes non-invasive as well as invasive ventilation, along with antipyretics, antivirals, antibiotics and steroids. Complicated cases may require treatment by immunomodulatory drugs and plasma exchange therapy. The search for an effective vaccine for COVID-19 is presently in full swing, with pharmaceutical corporations having started human trials in many countries.
A series of acute atypical respiratory infections ravaged the Wuhan city of Hubei province of China in December 2019. The pathogen responsible for these atypical infections was soon discovered to be a novel coronavirus belonging to the family Coronaviridae and was named as the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). It was seen to be highly homologous to the SARS coronavirus (SARS-CoV), which was responsible for the respiratory pandemic during the 2002–2003 period. 1 2 The respiratory illness caused by this virus was termed as coronavirus disease 2019 or simply COVID-19 by the WHO, and the outbreak was considered to have started via a zoonotic spread from the seafood markets in Wuhan, China. Subsequently, human-to-human transmission was recognised to be responsible for the community spread of the disease, being reported in approximately 200 countries worldwide. 3 , 4 , 5 , 6
After being broadcast as a public health emergency on January 30, 2020, COVID-19 was subsequently declared a pandemic on March 11, 2020 by the WHO. The SARS-CoV-2, which initially led to a severe pneumonia outbreak in China, has now rapidly spread all throughout the globe. As of July 6, 2020, there were almost 11.5 million cases worldwide, with approximately 536 893 reported deaths. 7 8
The virus is transmitted via respiratory droplets and aerosols from person to person. Once inside the body, the virus binds to host receptors and enters host cells through endocytosis or membrane fusion. The coronaviruses are made up of four structural proteins, namely, the spike (S), membrane (M), envelop (E) and nucleocapsid (N) proteins. 6 9 The S protein is seen to be protruding from the viral surface and is the most important one for host attachment and penetration. This protein is composed of two functional subunits (S 1 and S 2 ), among which S 1 is responsible for binding to the host cell receptor and S 2 subunit plays a role in the fusion of viral and host cellular membranes. 6
ACE-2 has been identified as a functional receptor for SARS-CoV and is highly expressed on the pulmonary epithelial cells. 10 It is through this host receptor that the S protein binds initially to start the host cell invasion by the virus. 11 , 12 , 13 After binding of SARS-CoV-2 to the ACE-2, the S protein undergoes activation via a two-step protease cleavage: the first one for priming at the S1/S2 cleavage site and the second cleavage for activation at a position adjacent to a fusion peptide within the S 2 subunit. 14 , 15 , 16 , 17 The initial cleavage stabilises the S2 subunit at the attachment site and the subsequent cleavage presumably activates the S protein causing conformational changes leading to viral and host cell membrane fusion. 18
Postmembrane fusion, the virus enters the pulmonary alveolar epithelial cells and the viral contents are released inside. Now inside the host cell, the virus undergoes replication and formation of a negative strand RNA by the pre-existing single-strand positive RNA through RNA polymerase activity (transcription). This newly formed negative strand RNA serves to produce new strands of positive RNAs which then go on to synthesise new proteins in the cell cytoplasm (translation). 19 , 20 , 21 The viral N protein binds the new genomic RNA and the M protein facilitates integration to the cellular endoplasmic reticulum. These newly formed Nucleocapsids are then enclosed in the ER membrane and transported to the lumen, from where they are transported via golgi vesicles to the cell membrane and then via exocytosis to the extracellular space. The new viral particles are now ready to invade the adjacent epithelial cells as well as for providing fresh infective material for community transmission via respiratory droplets. 6 An overview of the viral life cycle is shown in figure 1 .
The severe acute respiratory syndrome coronavirus-2 life cycle.
Although much has been discovered regarding the transmission and presentation, less is known about the pathophysiology of COVID-19. An overview of the disease pathophysiology has been shown in figure 2 . 6 22 23
Pathophysiology of COVID-19. CXCL-10, C-X-C motif chemokine ligand 10; IFN, interferon; IL, interleukin; MCP-1, monocyte chemoattractant protein-1; MIP-1α, macrophage inflammatory protein-1α; SARS-CoV-2, severe acute respiratory syndrome coronavirus-2; TNF-α, tumour necrosis factor-α; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor.
The SARS-CoV-2 which is received via respiratory aerosols binds to the nasal epithelial cells in the upper respiratory tract. The main host receptor for viral entry into cells is the ACE-2, which is seen to be highly expressed in adult nasal epithelial cells. 24 25 The virus undergoes local replication and propagation, along with the infection of ciliated cells in the conducting airways. 26 This stage lasts a couple of days and the immune response generated during this phase is a limited one. In spite of having a low viral load at this time, the individuals are highly infectious, and the virus can be detected via nasal swab testing.
In this stage, there is migration of the virus from the nasal epithelium to the upper respiratory tract via the conducting airways. Due to the involvement of the upper airways, the disease manifests with symptoms of fever, malaise and dry cough. There is a greater immune response during this phase involving the release of C-X-C motif chemokine ligand 10 (CXCL-10) and interferons (IFN-β and IFN-λ) from the virus-infected cells. 27 The majority of patients do not progress beyond this phase as the mounted immune response is sufficient to contain the spread of infection.
About one-fifth of all infected patients progress to this stage of disease and develop severe symptoms. The virus invades and enters the type 2 alveolar epithelial cells via the host receptor ACE-2 and starts to undergo replication to produce more viral Nucleocapsids. The virus-laden pneumocytes now release many different cytokines and inflammatory markers such as interleukins (IL-1, IL-6, IL-8, IL-120 and IL-12), tumour necrosis factor-α (TNF-α), IFN-λ and IFN-β, CXCL-10, monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α). This ‘cytokine storm’ acts as a chemoattractant for neutrophils, CD4 helper T cells and CD8 cytotoxic T cells, which then begin to get sequestered in the lung tissue. These cells are responsible for fighting off the virus, but in doing so are responsible for the subsequent inflammation and lung injury. The host cell undergoes apoptosis with the release of new viral particles, which then infect the adjacent type 2 alveolar epithelial cells in the same manner. Due to the persistent injury caused by the sequestered inflammatory cells and viral replication leading to loss of both type 1 and type 2 pneumocytes, there is diffuse alveolar damage eventually culminating in an acute respiratory distress syndrome. 6 28
COVID-19 virus is mainly spread from person to person via respiratory droplet transmission, which occurs when a person is in close contact with someone who is actively coughing or sneezing. This occurs through exposure of the mucosal surfaces of the host, that is, eyes, nose and mouth, to the incoming infective respiratory droplets. 3 29–33 Transmission of the virus may also occur through fomites used by or used on the infected individual such as bedsheets, blankets, kitchen utensils, thermometers and stethoscopes. Airborne transmission has not been reported for COVID-19, except in specific circumstances in which procedures that generate aerosols are performed, that is, endotracheal intubation, bronchoscopy, open suctioning, nebulisation with oxygen, bronchodilators or steroids, bag and mask ventilation before intubation, tracheostomy and cardiopulmonary resuscitation. 29 33 34
The incubation period of COVID-19, which is the time period from exposure to the virus to symptom onset, is 5–6 days, but can be up to 14 days. During this period, also known as the ‘pre-symptomatic’ period, the infected individuals can be contagious and transmit the virus to healthy individuals in the population. 35 The patients of COVID-19 belong mostly to the 40–70 years age group, and most commonly present with fever, body aches, breathlessness, malaise and dry cough, although patients may present with asymptomatic, mild, moderate or severe disease ( table 1 ). 1 36–39 Some patients may also present with gastrointestinal symptoms such as abdominal pain, vomiting and loose stools. 40 41 The complications seen in patients with COVID-19 infection are caused mostly due to the ‘cytokine storm’ and are summarised in table 2 . 42
Clinical spectrum of COVID-19 disease 1 36–41
Complications seen in patients with COVID-19 42
Molecular tests (RT-PCR)
Samples are collected from the upper respiratory tract via nasopharyngeal and oropharyngeal swabs and from the lower respiratory tract via expectorated sputum and bronchoalveolar lavage (only for mechanically ventilated patients). After being stored at 4°C, the samples are sent to the laboratory where amplification of the viral genetic material is done through a reverse-transcription process. 6 This involves the synthesis of a double-stranded DNA molecule from the existing viral RNA by either reverse-transcription PCR (RT-PCR) or a real-time RT-PCR. 43 44 Finally, the conserved portions of the SARS-CoV-2 genetic code are identified on the amplified genetic material. 6
The test is recommended to be repeated for verification in cases of a positive test and again to confirm viral clearance in COVID-19 positive cases. The sensitivity of these tests is not very high, that is, approximately 53.3% of COVID-19-confirmed patients had positive oropharyngeal swabs, and about 71% of patients came out to be RT-PCR positive with sputum samples. 45 46 The RT-PCR results usually show positivity after 2–8 days. 47
Till date, no effective antibody test has been developed. A centers for disease control and prevention (CDC) research on a test developed by the US Vaccine Research Centre at the National Institutes of Health is ongoing, which seems to have a specificity higher than 99% with a sensitivity of 96%. 6
Blood tests
A normal or decreased white blood cell count (and lymphopenia) can be observed in many cases, which is also considered to be indicative of a worse prognosis.
Increased levels of lactate dehydrogenase, C reactive protein, creatine kinase (CK MB and CK MM), aspartate amino-transferase and alanine amino-transferase can be seen. 6
Increased D-dimer levels and an elevated neutrophil-to-lymphocyte ratio are seen in some patients. 48
Coagulation abnormalities can be observed in severe cases, as indicated by increase in prothrombin time and international normalised ratio.
Chest X-ray
Chest X-ray is usually inconclusive in the early stages of the disease and might not show any significant changes. As the infection progresses, bilateral multifocal alveolar opacities are observed, which may also be associated with pleural effusion. 6
High-resolution CT (HRCT) is extremely sensitive and the method of choice for diagnosing COVID-19 pneumonia, even in initial stages of the illness. The most commonly seen features are multifocal bilateral ‘ground-glass’ areas associated with consolidation and a patchy peripheral distribution, with greater involvement of the lower lobes. A ‘reversed halo sign’ is also seen in some patients, which is identified as a focal area of patchy opacities surrounded by a peripheral ring with consolidation. Other findings include pleural effusion, cavitation, calcification, and lymphadenopathy. 6
A brief summary of all investigations designed for COVID-19 is given in table 3 .
Investigations for COVID-19
ALT, alanine amino-transferase; AST, aspartate amino-transferase; CRP, C reactive protein; HRCT, high-resolution CT; INR, international randomised ratio; LDH, lactate dehydrogenase; PT, prothrombin time; RT-PCR, reverse-transcription PCR; rRT-PCR, real-time reverse-transcriptionPCR; WBC, white blood count.
As no vaccine is presently available for COVID-19, the treatment is mainly symptomatic and supportive in most cases. Initially, the patient presenting to the emergency is categorised into mild, moderate or severe according to the symptoms on presentation. Most patients present with mild-to-moderate symptoms such as fever, persistent dry cough, body aches and occasional breathlessness. A small fraction of patients may also present with acute respiratory failure and acute respiratory distress syndrome with associated sepsis or multiorgan failure. The complete management protocol for patients with COVID-19 is depicted in figure 3 .
Treatment protocol for patients with COVID-19. RR, respiratory rate; SpO2, oxygen saturation; HCQS, hydroxychloroquine; ECG, electrocardiogram; HFNO, high flow nasal oxygen; NIV, non-invasive ventilation; I/V, intravenous; LMWH, low molecular weight heparin; CBC, complete blood count; LDH, lactate dehydrogenase; CRP, c- reactive protein; ICU, intensive care unit; ARDS, acute respiratory distress syndrome.
Mild cases (SpO 2 levels of 94%–97% in room air)
Oxygen therapy via nasal cannula/simple face mask/venturi mask/non-rebreather mask.
For management of patients presenting with respiratory distress due to COVID-19, the emergency room should be well-stocked with functioning oxygen systems, pulse oximeters and single-use disposable oxygen-delivering interfaces such as nasal cannulas, simple face masks, venturi masks, non-rebreather (NRB) masks and masks with reservoir bag. 49
Oxygen therapy is started with the arrival of the patient in the emergency and is administered according to the severity of presentation. For patients presenting with mild breathlessness and a SpO 2 level between 94% and 97%, a simple face mask or a nasal cannula can be used for oxygen delivery. In patients maintaining a SpO 2 <94%, patients with chronic obstructive pulmonary disease (COPD), a respiratory rate >30/min or persistent dyspnoea, oxygen is to be administered via a 40% venturi mask to ensure a higher level of fixed oxygen delivery. Reassessment is to be done after 10 min and if stable again at 6 hours. 6 If there is little or no improvement after 6 hours on a venturi mask, non-invasive ventilation (NIV) is to be considered. 6 NRB masks limit the dispersion of aerosol, thereby offering a safer alternative for supplemental oxygen delivery. 50
In addition to oxygen therapy, mild cases may be managed on a symptomatic basis with antipyretics (acetaminophen) for fever and pain, oral fluid supplementation and adequate nutrition. Hydroxychloroquine (HCQS) may be considered for cases having high-risk features such as age greater than 60 years and comorbidities such as morbid obesity, hypertension, COPD, diabetes, chronic kidney/liver disease and cerebrovascular disease. 49
Moderate cases (SpO 2 levels of 90%–94% in room air)
Patients with moderate disease (SpO 2 of 90%–94% in room air) are to be isolated to contain the virus transmission. A detailed clinical history is to be taken including history of pre-existing comorbid conditions. There should be monitoring of vital signs and oxygen saturation (SpO 2 levels), along with investigations such as a complete blood count, ECG and chest X-ray examination. 49 51
High-flow nasal oxygen (HFNO) therapy and NIV
HFNO therapy is used in these cases where it is not possible to maintain SpO 2 >92% and/or there is no improvement in dyspnoea through standard oxygen therapy via face mask. The oxygen flow rate in HFNO therapy is roughly 30–40 L/min, and it is to be continuously adjusted according to the clinical response of the patient. It is also found to be beneficial for continuous positive airway pressure (CPAP) breaks between cycles as well as in critically ill patients for whom assisted fibre-optic tracheal intubation is required. 52 This therapy should not be used in a hypercapnic patient, and owing to a higher risk of aerosolisation, it must only be used in negative pressure rooms. Patients who do not improve after an hour with flow >50 L/min and FiO2>70% are recommended to be switched over to NIV.
NIV by CPAP has an important role in managing the respiratory failure caused due to COVID-19. NIV is usually administered through a full face mask or an oro-nasal mask, but can also be given via a helmet in order to reduce aerosolisation. CPAP is started with 8–10 cm H 2 O and FiO 2 60% and adjusted according to patient compliance. 6
Other therapies in moderate COVID-19 disease include HCQS 400 mg two times per day stat followed by 200 mg two times per day for next 4 days (in cases without evidence of cardiac disease), intravenous methylprednisolone 0.5–1 mg/kg for 3 days (preferably within 48 hours of admission), and anticoagulation via prophylactic dose of low molecular weight heparin (LMWH) (enoxaparin 40 mg per day sub-cutaneous (SC)). 6 49 53 Antibiotics are recommended for management of secondary bacterial infections. The patient is to be monitored for signs of haemodynamic instability and increased oxygen demand as indicated by the use of accessory muscles of respiration.
Although there have been concerns regarding aerosol generation with the use of HFNO therapy and NIV, negative pressure rooms and administration of oxygen through a well-fitting helmet, respectively, have largely addressed this issue. Patients receiving HFNO therapy should be monitored by personnel who have experience with endotracheal intubation in case the patient does not improve after a short duration or decompensates abruptly.
Severe cases (SpO 2 levels ≤90% in room air or patients with ARDS)
For patients presenting with severe disease/ARDS, immediate oxygen therapy is to be started at 5 L/min and titrate flow rate for a target of SpO 2 ≥90% in non-pregnant adults and SpO 2 ≥92–96% in pregnant patients. 49 As compared to standard oxygen therapy delivered via face mask, HFNO therapy is much more effective in reducing the need for intubation in these cases. In cases of hypercapnia (exacerbation of obstructive lung disease and cardiogenic pulmonary oedema), haemodynamic instability, multiorgan failure, abnormal mental status or worsening of oxygen saturation below 90%, invasive ventilation via endotracheal intubation has to be considered promptly. 49 51
Endotracheal intubation and mechanical ventilation
Endotracheal intubation is usually performed by specialised personnel, after donning all personal protective equipment such as full-body gown, a N95 mask and protective goggles. Preoxygenation with 100% oxygen for 5 min is done via the CPAP method, and if possible, rapid sequence intubation should be preferred. Mechanical ventilation is initiated with lower tidal volumes (4–8 mL/kg body weight) and lower inspiratory pressures (plateau pressure <30 cm H 2 O). In patients with severe ARDS, prone ventilation for 16–18 hours per day is recommended but requires sufficient human resources and expertise to be performed safely. In patients with moderate or severe ARDS, higher positive end-expiratory pressure (PEEP) is suggested which has the benefits of decreasing trauma due to atelectasis and increased recruitment of alveoli, but can cause complications due to lung over-distension and increase in the pulmonary vascular resistance. 49 51
Extracorporeal membrane oxygenation (ECMO) for patients with refractory hypoxemia despite endotracheal intubation and mechanical ventilation should be considered if feasible. In COVID-19 patients, ECMO may represent an efficient support in case of refractory hypoxemia and/or cardiogenic/septic shock unresponsive to maximal therapy. 54
Septic shock in adults can be confirmed when, along with the background of a definite infection, there is presence of tachycardia, tachypnoea, hyperthermia, increased lactate levels and the requirement of vasopressor support to maintain mean arterial pressure ≥65 mm Hg, all in the absence of hypovolemia. 49 Management includes broad-spectrum antibiotics, fluid resuscitation and vasopressors for prevention/management of shock and peripheral hypo-perfusion. The preferred fluids in cases of septic shock are usually isotonic crystalloids (normal saline and ringer’s lactate), given at the rate of at least 30 mL/kg in the first 3 hours. Excess fluid resuscitation may lead to signs of volume overload (raised jugular venous pressure, chest crepitations and hepatomegaly) and requires discontinuation or reduction of intravenous fluids. Dobutamine is to be started if the patient shows signs of poor perfusion and cardiogenic shock despite the ongoing antibiotic and vasopressor support. 49 51
Antibiotics
Although not always recommended in viral pneumonia, an optimum and effective antibiotic regimen helps prevent or manage secondary bacterial infections and sepsis. Macrolides such as azithromycin are quite effective in preventing pulmonary infections in patients with viral pneumonias, in addition to having a significant anti-inflammatory effect on the airways. 55
Corticosteroids
Steroids can be used for a short period of time, that is, 3–5 days in patients who show progressive deterioration of oxygen saturation, increased activation of the pro-inflammatory response and rapid worsening of features on chest imaging. Methylprednisolone was the first and only steroid indicated initially, at a dose not exceeding 0.5–1 mg/kg/day for moderate cases and 1–2 mg/kg/day for severe cases. Higher doses were not recommended in view of the delay in viral clearance due to steroid mediated immunosuppression. 32 49 56 57
Recently, dexamethasone has also been found to be effective for decreasing mortality in severe and critically ill cases. 58
Antiviral drugs
The following antiviral drugs have been put to use for COVID-19 patients so far.
Remdesivir (CIPREMI/COVIFOR)
It was initially suggested by some preclinical studies that remdesivir has in vitro activity against multiple RNA viruses (including Ebola) and could be beneficial for both prophylaxis and treatment of coronavirus infections. 6 49 59 Remdesivir is a broad-spectrum antiviral agent, and acts by blocking the action of viral RNA-dependent RNA polymerase. This causes evasion of proofreading by viral exoribonuclease, causing a significantly decreased production of viral RNA. 60 In a mouse model of SARS-CoV, remdesivir was observed to reduce the lung viral load and improve pulmonary function. 61 It was used to treat the first case of COVID-19 infection in the USA, who showed rapid improvement after 1 day of remdesivir treatment. 62
In two separate studies, although remdesivir was seen to be superior to placebo in decreasing rates of lower respiratory tract infections and shortening hospital stay, there was no significant difference seen between a 5-day course and a 10-day course of remdesivir. 63 64 In comparison, therapeutic doses of lopinavir (LPV)/ritonavir (RTV) although did improve pulmonary function, but were not able to reduce virus replication or prevent severe lung damage. Thus, it is indicated that remdesivir has shown more potential than LPV/RTV in the treatment of COVID-19. 65 66 It may be considered in patients with moderate disease at a loading dose of 200 mg intravenous over 1–2 hours on day 1, followed by 100 mg intravenous daily for 5–10 days. Contraindications to the use of remdesivir include use in children, pregnant or lactating females, and patients with severe hepatic or renal impairment. 49
Thus, it is implied that remdesivir is best suited for hospitalised patients with COVID-19 having moderate-to-severe disease, and requiring supplemental oxygen therapy. On May 1, 2020, the US Food and Drug Administration (USFDA) gave emergency use approval for remdesivir in patients hospitalised with severe COVID-19; the final approval being given in light of tentative evidence of remdesivir efficacy in such patients. However, it is to be noted that treatment with remdesivir alone is not likely to be sufficient given the high mortality despite its use.
Lopinavir/ritonavir (KALETRA)
LPV has been shown to inhibit the coronavirus protease activity in vitro and in animal studies and to lower mortality rates as seen in a cohort study. 67 Effective dose of LPV is 400 mg orally every 12 hours, and based on the effectiveness of this drug during the previous SARS and Middle East respiratory syndrome virus outbreaks, it was initially seen as a potential treatment option for COVID-19. 68 However, a recent randomised controlled trial demonstrated no definitive benefit of LPV/RTV therapy as compared to routine management protocol. 69
Oseltamivir (TAMIFLU)
Although designed and used against influenza virus outbreaks, oseltamivir (75 mg two times per day for 5 days) was tested for patients with COVID-19 along with standard supportive care in two case series from Wuhan, China. As such, no clear additional benefit of oseltamivir therapy was observed in these patients. 70 71
Favipiravir (FABIFLU)
Favipiravir shows activity against RNA viruses by conversion into the ribofuranosyl triphosphate derivative by host enzymes and subsequent selective inhibition of the viral RNA-dependent RNA polymerase. It was initially discovered by the Toyama Chemical Company in Japan for therapeutic use in resistant cases of influenza. The drug has also shown effectiveness in the treatment of avian influenza and may be an alternative option for the treatment of illness caused by pathogens such as the Ebola virus and COVID-19. 72
Favipiravir has been recently launched under the trade name ‘FabiFlu’ by Glenmark Pharmaceuticals in June 2020 for patients with mild-to-moderate COVID-19, thereby becoming the first approved oral favipiravir medication for the treatment of COVID-19 in India. The recommended dose is 1800 mg two times per day on day 1, followed by 800 mg two times per day up until day 14. Favipiravir has proven in vitro activity against SARS CoV-2 virus and shows a significant improvement in mild-to-moderate cases with COVID-19. It is associated with rapid reduction of the viral load and an early symptomatic improvement. 72 73
Although individual antiviral drugs have proven to be somewhat effective in mild-to-moderate cases, future strategies should evaluate combination of antiviral agents, or antivirals with other therapeutic approaches, to improve patient outcomes in the critically ill COVID-19 cases.
Immunomodulatory drugs (tocilizumab, chloroquine and hydroxychloroquine)
Tocilizumab.
Tocilizumab is a humanised IgG1 monoclonal antibody, directed against the IL-6 receptor and commonly used in the treatment of rheumatoid arthritis, juvenile arthritis and giant cell arteritis. It may be considered in patients with moderate disease having raised inflammatory markers (IL-6) with progressively increasing oxygen demand and in mechanically ventilated patients unresponsive to therapy. The dosage is 8 mg/kg (maximum 800 mg at one time) given slowly in 100 mL normal saline (NS) over 1 hour, which can be repeated once after 12–24 hours if needed. Active tuberculosis and neutropenia are contraindications to the use of tocilizumab. 49 74 Treatment with tocilizumab, whether administered intravenously or subcutaneously, might reduce the risk of invasive mechanical ventilation or death in patients with severe COVID-19 pneumonia. 75
Chloroquine and hydroxychloroquine
Chloroquine is a widely used antimalarial drug that has been shown to have broad-spectrum antiviral activity. 76 Chloroquine (500 mg every 12 hours) blocks the virus infection by an increase in the endosomal pH required for virus/cell fusion, as well as by preventing SARS-CoV receptor glycosylation. 77 It has shown efficacy in reduction of exacerbation of COVID-19 pneumonia as well as accelerated viral and symptomatic clearance. 78
HCQS (200 mg every 12 hours) is a chloroquine analogue with a better safety profile and an anti-SARS-CoV activity in vitro. 79 HCQS was found to be more potent than chloroquine in SARS-CoV-2-infected Vero cells and also shown to be significantly associated with viral load reduction. 80 81 Although this antiviral effect is seen to be enhanced by the macrolide azithromycin, the combined use of both drugs can lead to an increased incidence of QT interval prolongation and cardiac arrhythmias. 82
Both chloroquine and HCQS have been observed to have immunomodulatory effects and have the capacity to suppress the massive immune response in COVID-19 (cytokine storm) induced by mediators such as IL-1, IL-6 and IL-10. 83 84
Plasma exchange via convalescent plasma
It was observed that the COVID-19 virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralised by plasma from several convalescent patients. 85 This therapy may be considered in patients with severe disease who do not show improvement (oxygen requirement is progressively increasing) despite use of steroids. Some important requirements for this procedure include an adequate antibody titre in the convalescent plasma, ABO compatibility and cross-matching of the donor plasma. The recipient should be closely monitored for several hours post-transfusion for any transfusion-related adverse events and its use should be avoided in patients with IgA deficiency or Ig allergies. Dose ranges from 4 to 13 mL/kg, and usually, a single dose of 200 mL is given slowly over 2 hours. 49 To ensure high efficacy via a high antibody titre, the convalescent plasma has to be collected within 2 weeks of patient recovery from COVID-19. 86
Supplementary therapies
Prophylactic anticoagulation via low molecular weight heparin (LMWH) (eg, enoxaparin 40 mg SC) should be given for anticoagulation in moderate (once time per day) to severe patients (two times per day) in view of the high risk of thromboembolism. Comorbidities such as associated hypertension, hypothyroidism or diabetes should be managed accordingly. In case of pregnant females presenting with severe disease, needful consultations should be taken from obstetric, neonatal and intensive care specialists. Psychological counselling should be ensured for patients suffering from fear and anxiety in view of being diagnosed with COVID-19. 49
The various treatment strategies for COVID-19 are summarised in table 4 .
Management strategies for COVID-19
HCQS, hydroxychloroquine; HFNO, high-flow nasal oxygen; IL, interleukin; NIV, non-invasive ventilation; I.V, intravenous; ARDS, acute respiratory distress syndrome.
The S glycoprotein of the SARS-CoV-2 is the target for most vaccines under development presently. 87 Some of the pharmaceutical companies with vaccine development under process have been described below. 88
Moderna Therapeutics announced its first experimental mRNA COVID-19 vaccine (mRNA-1273) in February 2020, ready for human testing. In May, the company announced the vaccine had produced antibodies in all 45 healthy volunteers, ages from 18 to 55, in this initial clinical phase. In early May, the company received permission from the USFDA to start a phase II study of its vaccine and expects to begin a phase III clinical trial in July.
At the end of April 2020, the company had enrolled 40 healthy volunteers in its phase I clinical trial and is preparing to start a phase II/III clinical trial soon.
University of Oxford (England)
A clinical trial with more than 500 participants showed that the potential vaccine has an 80% chance for success by using a modified virus to trigger the immune system. The university has partnered with pharmaceutical company AstraZeneca, and a late-stage clinical trial is planned to be initiated by the middle of this year.
University of Queensland (Australia)
Preclinical testing has been started in April by growing viral proteins in cell cultures.
CanSino Biologics and Sinovac Biotech (China)
CanSino Biologics aimed to assess the safety and immunogenicity of a recombinant adenovirus type-5 (Ad5) vectored COVID-19 vaccine expressing the S glycoprotein of the SARS-CoV-2 strain. The vaccine is seen to be tolerable, with humoral responses against SARS-CoV-2 peaking at day 28 postvaccination in healthy adults, and rapid specific T cell responses noted from day 14 postvaccination. The findings definitely warrant further investigation. 89
Sinovac Biotech’s COVID-19 vaccine candidate, dubbed Corona Vac, induced neutralising antibodies 14 days after vaccination. More than 90% of the 600 healthy volunteers in the phase 2 part of the phase 1/2 study showed the immune response. 90
Other pharmaceutical companies
Johnson & Johnson have announced the initiation of early-stage human clinical trials in late July. Pfizer has also teamed up with a German company to develop a vaccine; their initial clinical trial with 200 participants is already underway in April. Human testing has already been started in the USA in early May.
ICMR, NIV AND Zydus Cadila (India)
Recently, two COVID-19 vaccine candidates— Covaxin , developed by Bharat Biotech in collaboration with the Indian Council of Medical Research (ICMR) and the National Institute of Virology (NIV), and ZyCov-D vaccine by Zydus Cadila—have been approved for phase II and phase III human clinical trials, by the Drug Controller General of India. 91
The COVID-19 pandemic is now an international health emergency. Transmission via close contact from person to person has rapidly amplified the spread of disease, making it even more difficult to contain its spread in the community. The patient may be completely asymptomatic with a positive swab test, may present with a mild influenza-like illness or may present with serious symptoms that require hospitalisation. There is presently no effective antibody test available for rapid diagnosis, but HRCT scans of the chest have been seen to be quite sensitive and specific. In the absence of an effective vaccine, treatment is mainly supportive with oxygen therapy, antivirals, steroids, HCQS and antibiotics. Complicated cases and cases refractory to standard therapy may require immunomodulatory drugs and plasma exchange therapy via convalescent sera from recovered patients. Advances in viral genetic sequencing and technology have certainly paved the way for the development of a vaccine for COVID-19, with many pharmaceutical corporations already having started human trials.
The COVID-19 pandemic has now spread all across the globe, causing significant morbidity and mortality.
To date, there is still a dire need of an effective, rapid and sensitive serology test for COVID-19.
Several new and effective treatment options are now available, including antivirals, immunomodulators, corticosteroids and plasma exchange therapy.
The search for a potent vaccine has been initiated by many pharmaceutical institutions around the world, with many countries having started human clinical trials.
Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: a review [published online ahead of print, 20 April 2020]. Clin Immunol 2020;215:108427. doi:10.1016/j.clim.2020.108427.
Cascella M, Rajnik M, Cuomo A, et al. Features, evaluation and treatment coronavirus (COVID-19). Stat Pearls [Internet] . Treasure Island (FL): Stat Pearls Publishing, 2020 Jan. (Last Updated 18 May 2020).
Available https://www.mohfw.gov.in/pdf/Clinical/Management/Protocol/for/COVID-19.pdf . (accessed 20 Jun 2020).
Available https://www.who.int/docs/default-source/coronaviruse/clinical-management-of-novel-cov.pdf . (accessed 20 Jun 2020).
What are the obstacles in developing a rapid, effectivce and sensitive serology test for COVID-19?
Can the early implementation of HFNO and NIV improve patient prognosis in moderate to severe cases?
Are re-infections possible in individuals already once affected by the disease?
Can herd immunity boost the fight against COVID-19?
AP did the research and compilation of the literature as well as the editing and final submission of the manuscript.
The author has not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.
None declared.
Not required.
Not commissioned; externally peer reviewed.
Yuki K , Fujiogi M , Koutsogiannaki S . COVID-19 pathophysiology: a review [published online ahead of print, 2020 Apr 20] . Clin Immunol . 2020 ; 215 : 108427 . doi: 10.1016/j.clim.2020.108427
Google Scholar
Ksiazek TG , Erdman D , Goldsmith CS , et al. Group A novel coronavirus associated with severe acute respiratory syndrome . N Engl J Med 2003 ; 348 : 1953 – 66 . doi: 10.1056/NEJMoa030781
Li Q , Guan X , Wu P , et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia . N Engl J Med 2020 ; 382 : 1199 – 207 . doi: 10.1056/NEJMoa2001316
Zheng M , Gao Y , Wang G , et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients . Cell Mol Immunol 2020 . doi: 10.1038/s41423-020-0402-2
Zhang J , Litvinova M , Wang W , et al. Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: a descriptive and modelling study . Lancet Infect Dis 2020 ; 20 : 793 – 802 . doi: 10.1016/S1473-3099(20)30230-9
Cascella M , Rajnik M , Cuomo A , et al. , Features, evaluation and treatment coronavirus (COVID-19). Stat pearls [internet] . Treasure Island (FL) : Stat Pearls Publishing , Jan 2020 .
Google Preview
He Y , Wang J , Li F , et al. Main clinical features of COVID-19 and potential prognostic and therapeutic value of the microbiota in SARS-CoV-2 Infections . Front Microbiol 2020 ; 11 : 1302 . doi: 10.3389/fmicb.2020.01302
Available https://www.worldometers.info/coronavirus/ (accessed 6 July 2020) https://www.worldometers.info/coronavirus/ (accessed 6 July 2020)
Bosch BJ , van der Zee R , de Haan CA , et al. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex . J Virol 2003 ; 77 : 8801 – 11 . doi: 10.1128/jvi.77.16.8801-8811.2003
Li W , Moore MJ , Vasilieva N , et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus . Nature 2003 ; 426 : 450 – 4 . doi: 10.1038/nature02145
Chen Y , Guo Y , Pan Y , et al. Structure analysis of the receptor binding of 2019-nCoV [published online ahead of print, 2020 Feb 17] . Biochem Biophys Res Commun 2020 ; 525 : 135 – 40 . doi: 10.1016/j.bbrc.2020.02.071
Walls AC , Park YJ , Tortorici MA , et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein . Cell 2020 ; 181 : 281 – 292.e6 . doi: 10.1016/j.cell.2020.02.058
Letko M , Marzi A , Munster V . Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B beta coronaviruses . Nat Microbiol 2020 ; 5 : 562 – 9 . doi: 10.1038/s41564-020-0688-y
Ou X , Liu Y , Lei X , et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV . Nat Commun 2020 ; 11 : 1620 . doi: 10.1038/s41467-020-15562-9
Li T , Zhang Y , Fu L , et al. siRNA targeting the leader sequence of SARS-CoV inhibits virus replication . Gene Ther 2005 ; 12 : 751 – 61 . doi: 10.1038/sj.gt.3302479
Belouzard S , Chu VC , Whittaker GR . Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites . Proc Natl Acad Sci U S A 2009 ; 106 : 5871 – 6 . doi: 10.1073/pnas.0809524106
Belouzard S , Millet JK , Licitra BN , et al. Mechanisms of coronavirus cell entry mediated by the viral spike protein . Viruses 2012 ; 4 : 1011 – 33 . doi: 10.3390/v4061011
Available https://www.wikidoc.org/index.php/File:Coronavirus_replication.png(accessed10Jun2020)
Lai MM , Cavanagh D . The molecular biology of coronaviruses . Adv Virus Res 1997 ; 48 : 1 – 100 . doi: 10.1016/S0065-3527(08)60286-9
Yang N , Shen HM . Targeting the endocytic pathway and autophagy process as a novel therapeutic strategy in COVID-19 . Int J Biol Sci 2020 ; 16 : 1724 – 31 . doi: 10.7150/ijbs.45498
Mason RJ . Pathogenesis of COVID-19 from a cell biology perspective . Eur Respir J 2020 ; 55 : 2000607 . doi: 10.1183/13993003.00607-2020
Wu Z , McGoogan JM . Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese centre for disease control and prevention . JAMA 2020 ; 323 : 1239 . doi: 10.1001/jama.2020.2648
Wan Y , Shang J , Graham R , et al. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS . J Virol 2020 ; 94 : e00127 – 20 . doi: 10.1128/JVI.00127-20
Hoffmann M , Kleine-Weber H , Schroeder S , et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor . Cell 2020 ; 181 : 271 – 280.e8 . doi: 10.1016/j.cell.2020.02.052
Sims AC , Baric RS , Yount B , et al. Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs . J Virol 2005 ; 79 : 15511 – 24 . doi: 10.1128/JVI.79.24.15511-15524.2005
Tang NL , Chan PK , Wong CK , et al. Early enhanced expression of interferon-inducible protein-10 (CXCL-10) and other chemokines predicts adverse outcome in severe acute respiratory syndrome . Clin Chem 2005 ; 51 : 2333 – 40 . doi: 10.1373/clinchem.2005.054460
Xu Z , Shi L , Wang Y , et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome . Lancet Respir Med 2020 ; 8 : 420 – 2 . doi: 10.1016/S2213-2600(20)30076-X
Available https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-COVID-19-implications-for-ipc-precaution-recommendations(accessed10Jun2020)
Liu J , Liao X , Qian S , et al. Community transmission of severe acute respiratory syndrome coronavirus 2, Shenzhen, China . Emerg Infect Dis 2020 ; doi: 10.3201/eid2606.200239
Chan J , Yuan S , Kok K , et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster . Lancet 2020 ; 395 : 514 – 23 . doi: 10.1016/S0140-6736(20)30154-9
Huang C , Wang Y , Li X , et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China . Lancet 2020 ; 395 : 497 – 506 . doi: 10.1016/S0140-6736(20)30183-5
Burke RM , Midgley CM , Dratch A , et al. Active monitoring of persons exposed to patients with confirmed COVID-19: United States, January–February 2020 . MMWR Morb Mortal Wkly Rep 2020 . doi: 10.15585/mmwr.mm6909e1external
Ong SW , Tan YK , Chia PY , et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient . JAMA 2020 ; 323 : 1610 . doi: 10.1001/jama.2020.3227
Available https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200402-sitrep-73-COVID-19.pdf?sfvrsn=5ae25bc7_6 (accessed 10 Jun 2020) https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200402-sitrep-73-COVID-19.pdf?sfvrsn=5ae25bc7_6 (accessed 10 Jun 2020)
Donnelly CA , Ghani AC , Leung GM , et al. Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in hong kong . Lancet 2003 ; 361 : 1761 – 6 . doi: 10.1016/S0140-6736(03)13410-1
Goyal P , Choi JJ , Pinheiro LC , et al. Clinical characteristics of COVID-19 in New York city . N Engl J Med 2020 ; 382 : 2372 – 4 . doi: 10.1056/NEJMc2010419
Guan WJ , Ni ZY , Hu Y , et al. Clinical characteristics of coronavirus disease 2019 in China . N Engl J Med 2020 ; 382 : 1708 – 20 . doi: 10.1056/NEJMoa2002032
Young BE , Ong SWX , Kalimuddin S , et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore . JAMA 2020 ; 323 : 1488 – 94 . doi: 10.1001/jama.2020.3204
Cheung KS , Hung IF , Chan PP , et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from the hong kong cohort and systematic review and meta-analysis . Gastroenterology 2020 ; doi: 10.1053/j.gastro.2020.03.065
Available https://www.webmd.com/lung/COVID19-digestive-symptoms (accessed 15 Jun 2020) https://www.webmd.com/lung/COVID19-digestive-symptoms (accessed 15 Jun 2020)
Available https://bestpractice.bmj.com/topics/en-us/3000168/complications (accessed 15 Jun 2020) https://bestpractice.bmj.com/topics/en-us/3000168/complications (accessed 15 Jun 2020)
Bhadra S , Jiang YS , Kumar MR , et al. Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV) . PLoS One 2015 ; 10 : e0123126 . doi: 10.1371/journal.pone.0123126
Chan JF , Choi GK , Tsang AK , et al. Development and evaluation of novel real-time reverse transcription-PCR assays with locked nucleic acid probes targeting leader sequences of human-pathogenic Coronaviruses . J Clin Microbiol 2015 ; 53 : 2722 – 6 . doi: 10.1128/JCM.01224-15
Zhang W , Du RH , Li B , et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes . Emerg Microbes Infect 2020 ; 9 : 386 – 9 . doi: 10.1080/22221751.2020.1729071
Fang Y , Zhang H , Xie J , et al. Sensitivity of chest CT for COVID-19: comparison to RT-PCR . Radiology 2020 . doi: 10.1148/radiol.2020200432
Huang P , Liu T , Huang L , et al. Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion . Radiology 2020 . doi: 10.1148/radiol.2020200330
Yang AP , Liu JP , Tao WQ , et al. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients . Int Immunopharmacol 2020 ; 84 : 106504 . doi: 10.1016/j.intimp.2020.106504
Available https://www.mohfw.gov.in/pdf/ClinicalManagementProtocolforCOVID-19.pdf (accessed 20 Jun 2020) https://www.mohfw.gov.in/pdf/ClinicalManagementProtocolforCOVID-19.pdf (accessed 20 Jun 2020)
Available https://onlinelibrary.wiley.com/doi/pdf/10.1002/emp2.12071 (accessed 20 Jun 2020).
Available https://www.who.int/docs/default-source/coronaviruse/clinical-management-of-novel-cov.pdf (accessed 20 Jun 2020) https://www.who.int/docs/default-source/coronaviruse/clinical-management-of-novel-cov.pdf (accessed 20 Jun 2020)
Wu CN , Xia LZ , Li KH , et al. High-flow nasal-oxygenation-assisted fibreoptic tracheal intubation in critically ill patients with COVID-19 pneumonia: a prospective randomised controlled trial [published online ahead of print, 2020 Mar 19] . Br J Anaesth 2020 ; 125 : e166 – e168 . doi: 10.1016/j.bja.2020.02.020
Kollias A , Kyriakoulis KG , Dimakakos E , et al. Thromboembolic risk and anticoagulant therapy in COVID-19 patients: emerging evidence and call for action . Br J Haematol 2020 ; 189 : 846 – 7 . doi: 10.1111/bjh.16727
Kowalewski M , Fina D , Słomka A , et al. COVID-19 and ECMO: the interplay between coagulation and inflammation: a narrative review . Crit Care 2020 ; 24 : 205 . doi: 10.1186/s13054-020-02925-3
Bacharier LB , Guilbert TW , Mauger DT , et al. , Early administration of azithromycin and prevention of severe lower respiratory tract illnesses in preschool children with a history of such illnesses: a randomized clinical trial . JAMA 2015 ; 314 : 2034 – 44 . doi: 10.1001/jama.2015.13896
Arabi YM , Mandourah Y , Al-Hameed F , et al. Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome . Am J Respir Crit Care Med 2018 ; 197 : 757 – 67 . doi: 10.1164/rccm.201706-1172OC
Lee N , Allen Chan KC , Hui DS , et al. Effects of early corticosteroid treatment on plasma SARS-associated Coronavirus RNA concentrations in adult patients . J Clin Virol 2004 ; 31 : 304 – 9 . doi: 10.1016/j.jcv.2004.07.006
Available https://www.who.int/news-room/detail/16-06-2020-who-welcomes-preliminary-results-about-dexamethasone-use-in-treating-critically-ill-COVID-19-patients (accessed 22 Jun 2020) https://www.who.int/news-room/detail/16-06-2020-who-welcomes-preliminary-results-about-dexamethasone-use-in-treating-critically-ill-COVID-19-patients (accessed 22 Jun 2020)
Gordon CJ , Tchesnokov EP , Feng JY , et al. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus . J Biol Chem 2020 ; 295 : 4773 – 9 . doi: 10.1074/jbc.AC120.013056
Tchesnokov EP , Feng JY , Porter DP , et al. Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir . Viruses 2019 ; 11 : 326 . doi: 10.3390/v11040326
Sheahan TP , Sims AC , Graham RL , et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses . Sci Transl Med 2017 ; 9 : eaal3653 . doi: 10.1126/scitranslmed.aal3653
Holshue ML , DeBolt C , Lindquist S , et al. First case of 2019 novel coronavirus in the United States . N Engl J Med 2020 ; 382 : 929 – 36 . doi: 10.1056/NEJMoa2001191
Beigel JH , Tomashek KM , Dodd LE , et al. Remdesivir for the treatment of COVID-19 - preliminary report [published online ahead of print, 2020 may 22] . N Engl J Med 2020 ; NEJMoa2007764 . doi: 10.1056/NEJMoa2007764
Goldman JD , Lye DCB , Hui DS , et al. Remdesivir for 5 or 10 days in patients with severe COVID-19 [published online ahead of print, 2020 May 27] . N Engl J Med 2020 ; doi: 10.1056/NEJMoa2015301
Sheahan TP , Sims AC , Leist SR , et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV . Nat Commun 2020 ; 11 : 222 . doi: 10.1038/s41467-019-13940-6
Martinez MA . Compounds with therapeutic potential against novel respiratory 2019 coronavirus . Antimicrob Agents Chemother 2020 ; 64 : e00399 – 20 . doi: 10.1128/AAC.00399-20
Chan KS , Lai ST , Chu CM , et al. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study . Hong Kong Med J 2003 ; 9 : 399 – 406 .
Yao TT , Qian JD , Zhu WY , et al. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus-a possible reference for coronavirus disease-19 treatment option . J Med Virol 2020 ; 92 : 556 – 63 . doi: 10.1002/jmv.25729
Cao B , Wang Y , Wen D , et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19 . N Engl J Med 2020 ; 382 : 1787 – 99 . doi: 10.1056/NEJMoa2001282
Available https://medinfo.roche.com/content/dam/medinfo/documents/COVID-19/Tamiflu_GL-019936.pdf (accessed 22 Jun 2020) https://medinfo.roche.com/content/dam/medinfo/documents/COVID-19/Tamiflu_GL-019936.pdf (accessed 22 Jun 2020)
Chen N , Zhou M , Dong X , et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study . Lancet 2020 ; 395 : 507 – 13 . doi: 10.1016/S0140-6736(20)30211-7
National Center for Biotechnology Information . PubChem Database . Favipiravir, CID=492405 . Available https://pubchem.ncbi.nlm.nih.gov/compound/Favipiravir (accessed 25 Jun 2020) https://pubchem.ncbi.nlm.nih.gov/compound/Favipiravir (accessed 25 Jun 2020)
Available https://www.dnaindia.com/health/report-fabiflu-india-s-first-COVID-19-drug-launched-priced-at-rs-103-per-tablet-2829097 (accessed 25 Jun 2020) https://www.dnaindia.com/health/report-fabiflu-india-s-first-COVID-19-drug-launched-priced-at-rs-103-per-tablet-2829097 (accessed 25 Jun 2020)
Buonaguro FM , Puzanov I , Ascierto PA . Anti-IL6R role in treatment of COVID-19-related ARDS . J Transl Med 2020 ; 18 : 16 . doi: 10.1186/s12967-020-02333-9
Guaraldi G , Meschiari M , Cozzi-Lepri A , et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study . Published June 24 2020 . doi: 10.1016/S2665-9913(20)30173-9
Savarino A , Di Trani L , Donatelli I , et al. New insights into the antiviral effects of chloroquine . Lancet Infect Dis 2006 ; 6 : 67 – 9 . doi: 10.1016/S1473-3099(06)70361-9
Vincent MJ , Bergeron E , Benjannet S , et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread . Virol J 2005 ; 2 : 69 . doi: 10.1186/1743-422X-2-69
Gao J , Tian Z , Breakthrough: YX . Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies . Biosci Trends 2020 ; 14 : 72 – 3 . doi: 10.5582/bst.2020.01047
Biot C , Daher W , Chavain N , et al. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities . J Med Chem 2006 ; 49 : 2845 – 9 . doi: 10.1021/jm0601856
Yao X , Ye F , Zhang M , et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) [published online ahead of print, 2020 mar 9] . Clin Infect Dis 2020 ;ciaa237. doi: 10.1093/cid/ciaa237
Gautret P , Lagier JC , Parola P , et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial . Int J Antimicrob Agents 2020 ; 105949 . doi: 10.1016/j.ijantimicag.2020.105949
Mercuro NJ , Yen CF , Shim DJ , et al. Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID-19) [published online ahead of print, 2020 May 1] . JAMA Cardiol 2020 ;e201834. doi: 10.1001/jamacardio.2020.1834
Schrezenmeier E , Dorner T . Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology . Nat Rev Rheumatol 2020 ; 16 : 155 – 66 . doi: 10.1038/s41584-020-0372-x
Savarino A , Boelaert JR , Cassone A , et al. Effects of chloroquine on viral infections: an old drug against today’s diseases . Lancet Infect Dis 2003 ; 3 : 722 – 7 . doi: 10.1016/S1473-3099(03)00806-5
Zhou P , Yang XL , Wang XG , et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin . Nature 2020 ; 579 : 270 – 3 . doi: 10.1038/s41586-020-2012-7
Zhai P , Ding Y , Wu X , et al. The epidemiology, diagnosis and treatment of COVID-19 . Int J Antimicrob Agents 2020 ; 55 : 105955 . doi: 10.1016/j.ijantimicag.2020.105955
Du L , He Y , Zhou Y , et al. The spike protein of SARS-CoV: a target for vaccine and therapeutic development . Nat Rev Microbiol 2009 ; 7 : 226 – 36 . doi: 10.1038/nrmicro2090
Available https://www.healthline.com/health-news/heres-exactly-where-were-at-with-vaccines-and-treatments-for-COVID-19/#Antivirals (accessed 5 July 2020) https://www.healthline.com/health-news/heres-exactly-where-were-at-with-vaccines-and-treatments-for-COVID-19/#Antivirals (accessed 5 July 2020)
Zhu FC , Li YH , Guan XH , et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial . Lancet 2020 ; 395 : 1845 – 54 . doi: 10.1016/S0140-6736(20)31208-3
Available https://www.fiercepharma.com/vaccines/china-s-sinovac-says-COVID-19-vaccine-shows-early-positive-results-phase-2 (accessed 5 July 2020) https://www.fiercepharma.com/vaccines/china-s-sinovac-says-COVID-19-vaccine-shows-early-positive-results-phase-2 (accessed 5 July 2020)
Available https://www.livemint.com/news/india/coronavirus-vaccine-nod-to-human-trial-marks-beginning-of-the-end-says-govt-11593961927406.html (accessed 5 July 2020) https://www.livemint.com/news/india/coronavirus-vaccine-nod-to-human-trial-marks-beginning-of-the-end-says-govt-11593961927406.html (accessed 5 July 2020)
Email alerts
Citing articles via.
- X (formerly Twitter)
- Recommend to Your Librarian
- Advertising and Corporate Services
- Journals Career Network
Affiliations
- Online ISSN 1469-0756
- Print ISSN 0032-5473
- Copyright © 2024 Fellowship of Postgraduate Medicine
- About Oxford Academic
- Publish journals with us
- University press partners
- What we publish
- New features
- Open access
- Institutional account management
- Rights and permissions
- Get help with access
- Accessibility
- Advertising
- Media enquiries
- Oxford University Press
- Oxford Languages
- University of Oxford
Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide
- Copyright © 2024 Oxford University Press
- Cookie settings
- Cookie policy
- Privacy policy
- Legal notice
This Feature Is Available To Subscribers Only
Sign In or Create an Account
This PDF is available to Subscribers Only
For full access to this pdf, sign in to an existing account, or purchase an annual subscription.
IMAGES
VIDEO
COMMENTS
COVID-19 is an infectious disease of the human respiratory system caused by the virus SARS-CoV-2. The disease is almost always mild and causes fever, dry cough, shortness of breath, and fatigue. Older people and other at-risk populations may develop life-threatening symptoms. There is no vaccine or treatment.
If you want to make COVID-19 understandable for your middle school students, we recommend using this editable template from Slidesgo. ... particularly in the field of immunology. Highlight these achievements with a Google Slides and PowerPoint presentation! Designed with clear blue hues, this template offers a professional and compelling way to ...
COVID-19 presentation for educators - Google Slides. JavaScript isn't enabled in your browser, so this file can't be opened.
of COVID-19, the nurse will assess you, provide care and perform a COVID-19 test for you The nurse will also contact your parent /guardian on the day of the test. The nurse will explain everything about the COVID-19 test before doing the test. The nurse will have to swab your nose and throat. You will know the results of your test in about 1 hour.
A presentation series on preventing COVID-19 in schools and childcare settings. This series is intended to provide information on implementing public health measures for those working in these settings. Topics include: COVID-19 transmission, personal protective equipment, hand hygiene, physical distancing and environmental cleaning.
Parts of this slide didn't load. Try reloading. Show anyway Reload ...
What's New - COVID-19 Test Distribution (2024) To help prevent the spread of COVID-19 -- and to support strong school attendance so that students can safely learn in person -- the U.S. Department of Education (ED) is working in collaboration with the Administration for Strategic Preparedness and Response at the U.S. Department of Health and Human Services (HHS) to provide free COVID-19 tests ...
The COVID-19 vaccination training for health workers package is developed for frontline health workers in countries. The package consists of 6 modules, which include video lectures, quizzes, job aids, interactive exercises and downloadable presentations with the available information. Access the training.
Presentation template - 28 April 2021. 28 April 2021. | COVID-19: Critical preparedness, readiness and response. Download (3.8 MB)
COVID-19 Prevention PPT. STAY If you feel sick, stay home. SAFE Keep a safe distance from others. COVID-19 PREVENTION WASH Wash your hands frequently. CLEAN Clean and disinfect frequently used surfaces. PROTECT Protect the vulnerable. FLORIDA DEPARTMENT OF EDUCATION fldoe.org SICK STUDENTS AND ADULTS SHOULD REMAIN HOME, STOPS #COVID WITHME.
To help with the current coronavirus emergency, we have put together these free coronavirus tips Powerpoint slide templates for you to use. The slides include coronavirus prevention tips, symptoms and instructions on what to do if you have symptoms. Feel free to adjust the templates based on your local health authority instructions and contact ...
COVID-19 vaccine accelerated development. As of 2nd March 2021, there are 76 COVID-19 candidate vaccines in clinical development of which 12 are in Phase III and 4 in Phase IV trials. There are another 182 candidate vaccines in preclinical development. More than 90% of all top candidate vaccines will be delivered through.
Students will be grouped to better track and monitor student and staff movement (contact tracing) should a confirmed case of COVID-19 occur. Teacher provides in-person instruction; students. Meals. Students will be served Breakfast on the Go after clearing screening as they enter the building. Breakfast will be eaten in the classroom.
COVID-19 is the name of the "novel coronavirus" disease. SARS-CoV-2 is the name of the virus that causes COVID-19. Coronaviruses cause mild respiratory illnesses, such as the common cold. Severe Acute Respiratory Syndrome (SARS) Middle East Respiratory Syndrome (MERS) COVID-19 is a new coronavirus disease.
PowerPoint Presentation. Interim Joint Committee on EducationStudent Participation During the COVID-19 Pandemic. June 1, 2021. Kentucky Department of Education. Office of Finance and Operations. Robin Kinney, Associate Commissioner, Office of Finance and Operations. Jessi Carlton, Assistant Director, Division of District Support.
Goal is to keep students in school. ... Please direct concerns regarding COVID-19 testing entities to . [email protected]. Please provide the following information, if available, in the email: ... 09/20/2021 06:56:41 Title: PowerPoint Presentation Last modified by: Brenneke, Lori
It was seen to be highly homologous to the SARS coronavirus (SARS-CoV), which was responsible for the respiratory pandemic during the 2002-2003 period. 1 2 The respiratory illness caused by this virus was termed as coronavirus disease 2019 or simply COVID-19 by the WHO, and the outbreak was considered to have started via a zoonotic spread ...
FDA recommends. If symptomatic, test at least twice 48 hours apart. A third test might be needed if the patient is concerned they have COVID-19. If asymptomatic, but believe they have been exposed, test with RAT at least 3 times, each 48 hours apart to be considered truly negative. Consider reflex testing to NAAT.
Help students learn what's safe and unsafe when returning to school during the COVID-19 pandemic with our COVID-19: Is It a Safe or Unsafe Activity? Presentation - PowerPoint & Google Slides. This interactive presentation allows students to sort safe and unsafe activities. This provides a great visual for younger students and will reinforce proper social distancing and health safety. This ...