Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Pearson Correlation Coefficient (r) | Guide & Examples

Pearson Correlation Coefficient (r) | Guide & Examples

Published on May 13, 2022 by Shaun Turney . Revised on February 10, 2024.

The Pearson correlation coefficient ( r ) is the most common way of measuring a linear correlation. It is a number between –1 and 1 that measures the strength and direction of the relationship between two variables.

Pearson correlation coefficient ( ) Correlation type Interpretation Example
Between 0 and 1 Positive correlation When one variable changes, the other variable changes in the . Baby length & weight:

The longer the baby, the heavier their weight.

0 No correlation There is between the variables. Car price & width of windshield wipers:

The price of a car is not related to the width of its windshield wipers.

Between
0 and –1
Negative correlation When one variable changes, the other variable changes in the . Elevation & air pressure:

The higher the elevation, the lower the air pressure.

Table of contents

What is the pearson correlation coefficient, visualizing the pearson correlation coefficient, when to use the pearson correlation coefficient, calculating the pearson correlation coefficient, testing for the significance of the pearson correlation coefficient, reporting the pearson correlation coefficient, other interesting articles, frequently asked questions about the pearson correlation coefficient.

The Pearson correlation coefficient ( r ) is the most widely used correlation coefficient and is known by many names:

  • Pearson’s r
  • Bivariate correlation
  • Pearson product-moment correlation coefficient (PPMCC)
  • The correlation coefficient

The Pearson correlation coefficient is a descriptive statistic , meaning that it summarizes the characteristics of a dataset. Specifically, it describes the strength and direction of the linear relationship between two quantitative variables.

Although interpretations of the relationship strength (also known as effect size ) vary between disciplines, the table below gives general rules of thumb:

Pearson correlation coefficient ( ) value Strength Direction
Greater than .5 Strong Positive
Between .3 and .5 Moderate Positive
Between 0 and .3 Weak Positive
0 None None
Between 0 and –.3 Weak Negative
Between –.3 and –.5 Moderate Negative
Less than –.5 Strong Negative

The Pearson correlation coefficient is also an inferential statistic , meaning that it can be used to test statistical hypotheses . Specifically, we can test whether there is a significant relationship between two variables.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

hypothesis testing for correlation

Another way to think of the Pearson correlation coefficient ( r ) is as a measure of how close the observations are to a line of best fit .

The Pearson correlation coefficient also tells you whether the slope of the line of best fit is negative or positive. When the slope is negative, r is negative. When the slope is positive, r is positive.

When r is 1 or –1, all the points fall exactly on the line of best fit:

Strong positive correlation and strong negative correlation

When r is greater than .5 or less than –.5, the points are close to the line of best fit:

Perfect positive correlation and Perfect negative correlation

When r is between 0 and .3 or between 0 and –.3, the points are far from the line of best fit:

Low positive correlation and low negative correlation

When r is 0, a line of best fit is not helpful in describing the relationship between the variables:

Zero correlation

The Pearson correlation coefficient ( r ) is one of several correlation coefficients that you need to choose between when you want to measure a correlation. The Pearson correlation coefficient is a good choice when all of the following are true:

  • Both variables are quantitative : You will need to use a different method if either of the variables is qualitative .
  • The variables are normally distributed : You can create a histogram of each variable to verify whether the distributions are approximately normal. It’s not a problem if the variables are a little non-normal.
  • The data have no outliers : Outliers are observations that don’t follow the same patterns as the rest of the data. A scatterplot is one way to check for outliers—look for points that are far away from the others.
  • The relationship is linear: “Linear” means that the relationship between the two variables can be described reasonably well by a straight line. You can use a scatterplot to check whether the relationship between two variables is linear.

Pearson vs. Spearman’s rank correlation coefficients

Spearman’s rank correlation coefficient is another widely used correlation coefficient. It’s a better choice than the Pearson correlation coefficient when one or more of the following is true:

  • The variables are ordinal .
  • The variables aren’t normally distributed .
  • The data includes outliers.
  • The relationship between the variables is non-linear and monotonic.

Below is a formula for calculating the Pearson correlation coefficient ( r ):

\begin{equation*} r = \frac{ n\sum{xy}-(\sum{x})(\sum{y})}{% \sqrt{[n\sum{x^2}-(\sum{x})^2][n\sum{y^2}-(\sum{y})^2]}} \end{equation*}

The formula is easy to use when you follow the step-by-step guide below. You can also use software such as R or Excel to calculate the Pearson correlation coefficient for you.

3.63 53.1
3.02 49.7
3.82 48.4
3.42 54.2
3.59 54.9
2.87 43.7
3.03 47.2
3.46 45.2
3.36 54.4
3.3 50.4

Step 1: Calculate the sums of x and y

Start by renaming the variables to “ x ” and “ y .” It doesn’t matter which variable is called x and which is called y —the formula will give the same answer either way.

Next, add up the values of x and y . (In the formula, this step is indicated by the Σ symbol, which means “take the sum of”.)

Σ x = 3.63 + 3.02 + 3.82 + 3.42 + 3.59 + 2.87 + 3.03 + 3.46 + 3.36 + 3.30

Σ y = 53.1 + 49.7 + 48.4 + 54.2 + 54.9 + 43.7 + 47.2 + 45.2 + 54.4 + 50.4

Step 2: Calculate x 2 and y 2 and their sums

Create two new columns that contain the squares of x and y . Take the sums of the new columns.

3.63 53.1 (3.63)2 = 13.18 (53.1)2 = 2 819.6
3.02 49.7 9.12 2 470.1
3.82 48.4 14.59 2 342.6
3.42 54.2 11.7 2 937.6
3.59 54.9 12.89 3 014
2.87 43.7 8.24 1 909.7
3.03 47.2 9.18 2 227.8
3.46 45.2 11.97 2 043
3.36 54.4 11.29 2 959.4
3.3 50.4 10.89 2 540.2

Σ x 2  = 13.18 + 9.12 + 14.59 + 11.70 + 12.89 +  8.24 +  9.18 + 11.97 + 11.29 + 10.89

Σ x 2  = 113.05

Σ y 2  = 2 819.6 + 2 470.1 + 2 342.6 + 2 937.6 + 3 014.0 + 1 909.7 + 2 227.8 + 2 043.0 + 2 959.4 + 2 540.2

Step 3: Calculate the cross product and its sum

In a final column, multiply together x and y (this is called the cross product). Take the sum of the new column.

3.63 53.1 13.18 2 819.6 3.63 * 53.1 = 192.8
3.02 49.7 9.12 2 470.1 150.1
3.82 48.4 14.59 2 342.6 184.9
3.42 54.2 11.7 2 937.6 185.4
3.59 54.9 12.89 3 014 197.1
2.87 43.7 8.24 1 909.7 125.4
3.03 47.2 9.18 2 227.8 143
3.46 45.2 11.97 2 043 156.4
3.36 54.4 11.29 2 959.4 182.8
3.3 50.4 10.89 2 540.2 166.3

Σ xy = 192.8 + 150.1 + 184.9 + 185.4 + 197.1 + 125.4 + 143.0 + 156.4 + 182.8 + 166.3

Step 4: Calculate r

Use the formula and the numbers you calculated in the previous steps to find r .

n = 10

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

The Pearson correlation coefficient can also be used to test whether the relationship between two variables is significant .

The Pearson correlation of the sample is r . It is an estimate of rho ( ρ ), the Pearson correlation of the population . Knowing r and n (the sample size), we can infer whether ρ is significantly different from 0.

  • Null hypothesis ( H 0 ): ρ = 0
  • Alternative hypothesis ( H a ): ρ ≠ 0

To test the hypotheses , you can either use software like R or Stata or you can follow the three steps below.

Step 1: Calculate the t value

Calculate the t value (a test statistic ) using this formula:

\begin{equation*} t = \frac{r} {\sqrt{\dfrac{1-r^2}{n-2}}} \end{equation*}

Step 2: Find the critical value of t

You can find the critical value of t ( t* ) in a t table. To use the table, you need to know three things:

  • The degrees of freedom ( df ): For Pearson correlation tests, the formula is df = n – 2.
  • Significance level (α): By convention, the significance level is usually .05.
  • One-tailed or two-tailed: Most often, two-tailed is an appropriate choice for correlations.

Step 3: Compare the t value to the critical value

Determine if the absolute t value is greater than the critical value of t . “Absolute” means that if the t value is negative you should ignore the minus sign.

Step 4: Decide whether to reject the null hypothesis

  • If the t value is greater than the critical value, then the relationship is statistically significant ( p <  α ). The data allows you to reject the null hypothesis and provides support for the alternative hypothesis.
  • If the t value is less than the critical value, then the relationship is not statistically significant ( p >  α ). The data doesn’t allow you to reject the null hypothesis and doesn’t provide support for the alternative hypothesis.

If you decide to include a Pearson correlation ( r ) in your paper or thesis, you should report it in your results section . You can follow these rules if you want to report statistics in APA Style :

  • You don’t need to provide a reference or formula since the Pearson correlation coefficient is a commonly used statistic.
  • You should italicize r when reporting its value.
  • You shouldn’t include a leading zero (a zero before the decimal point) since the Pearson correlation coefficient can’t be greater than one or less than negative one.
  • You should provide two significant digits after the decimal point.

When Pearson’s correlation coefficient is used as an inferential statistic (to test whether the relationship is significant), r is reported alongside its degrees of freedom and p value. The degrees of freedom are reported in parentheses beside r .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square test of independence
  • Statistical power
  • Descriptive statistics
  • Degrees of freedom
  • Null hypothesis

Methodology

  • Double-blind study
  • Case-control study
  • Research ethics
  • Data collection
  • Hypothesis testing
  • Structured interviews

Research bias

  • Hawthorne effect
  • Unconscious bias
  • Recall bias
  • Halo effect
  • Self-serving bias
  • Information bias

You should use the Pearson correlation coefficient when (1) the relationship is linear and (2) both variables are quantitative and (3) normally distributed and (4) have no outliers.

You can use the cor() function to calculate the Pearson correlation coefficient in R. To test the significance of the correlation, you can use the cor.test() function.

You can use the PEARSON() function to calculate the Pearson correlation coefficient in Excel. If your variables are in columns A and B, then click any blank cell and type “PEARSON(A:A,B:B)”.

There is no function to directly test the significance of the correlation.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Turney, S. (2024, February 10). Pearson Correlation Coefficient (r) | Guide & Examples. Scribbr. Retrieved September 9, 2024, from https://www.scribbr.com/statistics/pearson-correlation-coefficient/

Is this article helpful?

Shaun Turney

Shaun Turney

Other students also liked, simple linear regression | an easy introduction & examples, coefficient of determination (r²) | calculation & interpretation, hypothesis testing | a step-by-step guide with easy examples, what is your plagiarism score.

Pardon Our Interruption

As you were browsing something about your browser made us think you were a bot. There are a few reasons this might happen:

  • You've disabled JavaScript in your web browser.
  • You're a power user moving through this website with super-human speed.
  • You've disabled cookies in your web browser.
  • A third-party browser plugin, such as Ghostery or NoScript, is preventing JavaScript from running. Additional information is available in this support article .

To regain access, please make sure that cookies and JavaScript are enabled before reloading the page.

SPSS tutorials website header logo

SPSS Correlation Analysis Tutorial

Correlation Test - What Is It?

Null hypothesis.

  • Assumptions
  • Correlation Test in SPSS

A (Pearson) correlation is a number between -1 and +1 that indicates to what extent 2 quantitative variables are linearly related. It's best understood by looking at some scatterplots .

SPSS Correlation Analysis Nice Scatterplot

  • a correlation of -1 indicates a perfect linear descending relation: higher scores on one variable imply lower scores on the other variable.
  • a correlation of 0 means there's no linear relation between 2 variables whatsoever. However, there may be a (strong) non-linear relation nevertheless.
  • a correlation of 1 indicates a perfect ascending linear relation: higher scores on one variable are associated with higher scores on the other variable.

A correlation test (usually) tests the null hypothesis that the population correlation is zero. Data often contain just a sample from a (much) larger population: I surveyed 100 customers (sample) but I'm really interested in all my 100,000 customers (population). Sample outcomes typically differ somewhat from population outcomes. So finding a non zero correlation in my sample does not prove that 2 variables are correlated in my entire population; if the population correlation is really zero, I may easily find a small correlation in my sample. However, finding a strong correlation in this case is very unlikely and suggests that my population correlation wasn't zero after all.

Correlation Test - Assumptions

Computing and interpreting correlation coefficients themselves does not require any assumptions. However, the statistical significance -test for correlations assumes

  • independent observations;
  • normality: our 2 variables must follow a bivariate normal distribution in our population. This assumption is not needed for sample sizes of N = 25 or more. For reasonable sample sizes, the central limit theorem ensures that the sampling distribution will be normal.

SPSS - Quick Data Check

Let's run some correlation tests in SPSS now. We'll use adolescents.sav , a data file which holds psychological test data on 128 children between 12 and 14 years old. Part of its variable view is shown below.

SPSS Adolescents Data Variable View

Now, before running any correlations, let's first make sure our data are plausible in the first place. Since all 5 variables are metric, we'll quickly inspect their histograms by running the syntax below.

Histogram Output

Our histograms tell us a lot: our variables have between 5 and 10 missing values . Their means are close to 100 with standard deviations around 15 -which is good because that's how these tests have been calibrated. One thing bothers me , though, and it's shown below.

SPSS Correlation Analysis Histogram With Outlier

It seems like somebody scored zero on some tests -which is not plausible at all. If we ignore this, our correlations will be severely biased . Let's sort our cases, see what's going on and set some missing values before proceeding.

SPSS Correlation Outlier In Data View

If we now rerun our histograms, we'll see that all distributions look plausible. Only now should we proceed to running the actual correlations.

Running a Correlation Test in SPSS

SPSS Menu Arrow

Move all relevant variables into the variables box. You probably don't want to change anything else here.

SPSS Correlations Dialog

Clicking P aste results in the syntax below. Let's run it.

SPSS CORRELATIONS Syntax

Correlation output.

SPSS Correlation Test Output

By default, SPSS always creates a full correlation matrix. Each correlation appears twice: above and below the main diagonal. The correlations on the main diagonal are the correlations between each variable and itself -which is why they are all 1 and not interesting at all. The 10 correlations below the diagonal are what we need. As a rule of thumb, a correlation is statistically significant if its “Sig. (2-tailed)” < 0.05. Now let's take a close look at our results: the strongest correlation is between depression and overall well-being : r = -0.801. It's based on N = 117 children and its 2-tailed significance , p = 0.000. This means there's a 0.000 probability of finding this sample correlation -or a larger one- if the actual population correlation is zero. Note that IQ does not correlate with anything . Its strongest correlation is 0.152 with anxiety but p = 0.11 so it's not statistically significantly different from zero. That is, there's an 0.11 chance of finding it if the population correlation is zero. This correlation is too small to reject the null hypothesis. Like so, our 10 correlations indicate to which extent each pair of variables are linearly related. Finally, note that each correlation is computed on a slightly different N -ranging from 111 to 117. This is because SPSS uses pairwise deletion of missing values by default for correlations.

Scatterplots

Strictly, we should inspect all scatterplots among our variables as well. After all, variables that don't correlate could still be related in some non-linear fashion. But for more than 5 or 6 variables, the number of possible scatterplots explodes so we often skip inspecting them. However, see SPSS - Create All Scatterplots Tool . The syntax below creates just one scatterplot, just to get an idea of what our relation looks like. The result doesn't show anything unexpected, though.

SPSS Correlation Analysis Nice Scatterplot

Reporting a Correlation Test

The figure below shows the most basic format recommended by the APA for reporting correlations. Importantly, make sure the table indicates which correlations are statistically significant at p < 0.05 and perhaps p < 0.01. Also see SPSS Correlations in APA Format .

Correlation Table in APA format

If possible, report the confidence intervals for your correlations as well. Oddly, SPSS doesn't include those. However, see SPSS Confidence Intervals for Correlations Tool .

Thanks for reading!

Tell us what you think!

This tutorial has 56 comments:.

hypothesis testing for correlation

By thavorn on December 20th, 2022

I love to learn again to refresh my statistic knowledge, thank you.

Module 12: Linear Regression and Correlation

Testing the significance of the correlation coefficient, learning outcomes.

  • Calculate and interpret the correlation coefficient

The correlation coefficient,  r , tells us about the strength and direction of the linear relationship between x and y . However, the reliability of the linear model also depends on how many observed data points are in the sample. We need to look at both the value of the correlation coefficient r and the sample size n , together.

We perform a hypothesis test of the “ significance of the correlation coefficient ” to decide whether the linear relationship in the sample data is strong enough to use to model the relationship in the population.

The sample data are used to compute  r , the correlation coefficient for the sample. If we had data for the entire population, we could find the population correlation coefficient. But because we have only have sample data, we cannot calculate the population correlation coefficient. The sample correlation coefficient, r , is our estimate of the unknown population correlation coefficient.

  • The symbol for the population correlation coefficient is ρ , the Greek letter “rho.”
  • ρ = population correlation coefficient (unknown)
  • r = sample correlation coefficient (known; calculated from sample data)

The hypothesis test lets us decide whether the value of the population correlation coefficient ρ is “close to zero” or “significantly different from zero”. We decide this based on the sample correlation coefficient r and the sample size n .

If the test concludes that the correlation coefficient is significantly different from zero, we say that the correlation coefficient is “significant.” Conclusion: There is sufficient evidence to conclude that there is a significant linear relationship between x and y because the correlation coefficient is significantly different from zero. What the conclusion means: There is a significant linear relationship between x and y . We can use the regression line to model the linear relationship between x and y in the population.

If the test concludes that the correlation coefficient is not significantly different from zero (it is close to zero), we say that correlation coefficient is “not significant.”

Conclusion: “There is insufficient evidence to conclude that there is a significant linear relationship between x and y because the correlation coefficient is not significantly different from zero.” What the conclusion means: There is not a significant linear relationship between x and y . Therefore, we CANNOT use the regression line to model a linear relationship between x and y in the population.

  • If r is significant and the scatter plot shows a linear trend, the line can be used to predict the value of y for values of x that are within the domain of observed x values.
  • If r is not significant OR if the scatter plot does not show a linear trend, the line should not be used for prediction.
  • If r is significant and if the scatter plot shows a linear trend, the line may NOT be appropriate or reliable for prediction OUTSIDE the domain of observed x values in the data.

Performing the Hypothesis Test

  • Null Hypothesis: H 0 : ρ = 0
  • Alternate Hypothesis: H a : ρ ≠ 0

What the Hypotheses Mean in Words

  • Null Hypothesis H 0 : The population correlation coefficient IS NOT significantly different from zero. There IS NOT a significant linear relationship(correlation) between x and y in the population.
  • Alternate Hypothesis H a : The population correlation coefficient IS significantly DIFFERENT FROM zero. There IS A SIGNIFICANT LINEAR RELATIONSHIP (correlation) between x and y in the population.

Drawing a Conclusion

There are two methods of making the decision. The two methods are equivalent and give the same result.

  • Method 1: Using the p -value
  • Method 2: Using a table of critical values

In this chapter of this textbook, we will always use a significance level of 5%,  α = 0.05

Using the  p -value method, you could choose any appropriate significance level you want; you are not limited to using α = 0.05. But the table of critical values provided in this textbook assumes that we are using a significance level of 5%, α = 0.05. (If we wanted to use a different significance level than 5% with the critical value method, we would need different tables of critical values that are not provided in this textbook.)

Method 1: Using a p -value to make a decision

To calculate the  p -value using LinRegTTEST:

  • On the LinRegTTEST input screen, on the line prompt for β or ρ , highlight “≠ 0”
  • The output screen shows the p-value on the line that reads “p =”.
  • (Most computer statistical software can calculate the p -value.)

If the p -value is less than the significance level ( α = 0.05)

  • Decision: Reject the null hypothesis.
  • Conclusion: “There is sufficient evidence to conclude that there is a significant linear relationship between x and y because the correlation coefficient is significantly different from zero.”

If the p -value is NOT less than the significance level ( α = 0.05)

  • Decision: DO NOT REJECT the null hypothesis.
  • Conclusion: “There is insufficient evidence to conclude that there is a significant linear relationship between x and y because the correlation coefficient is NOT significantly different from zero.”

Calculation Notes:

  • You will use technology to calculate the p -value. The following describes the calculations to compute the test statistics and the p -value:
  • The p -value is calculated using a t -distribution with n – 2 degrees of freedom.
  • The formula for the test statistic is [latex]\displaystyle{t}=\frac{{{r}\sqrt{{{n}-{2}}}}}{\sqrt{{{1}-{r}^{{2}}}}}[/latex]. The value of the test statistic, t , is shown in the computer or calculator output along with the p -value. The test statistic t has the same sign as the correlation coefficient r .
  • The p -value is the combined area in both tails.

An alternative way to calculate the  p -value (p) given by LinRegTTest is the command 2*tcdf(abs(t),10^99, n-2) in 2nd DISTR.

Method 2: Using a table of Critical Values to make a decision

The 95% Critical Values of the Sample Correlation Coefficient Table can be used to give you a good idea of whether the computed value of is significant or not. Compare  r to the appropriate critical value in the table. If r is not between the positive and negative critical values, then the correlation coefficient is significant. If r is significant, then you may want to use the line for prediction.

Suppose you computed  r = 0.801 using n = 10 data points. df = n – 2 = 10 – 2 = 8. The critical values associated with df = 8 are -0.632 and + 0.632. If r < negative critical value or r > positive critical value, then r is  significant . Since r = 0.801 and 0.801 > 0.632, r is significant and the line may be used for prediction. If you view this example on a number line, it will help you.

Horizontal number line with values of -1, -0.632, 0, 0.632, 0.801, and 1. A dashed line above values -0.632, 0, and 0.632 indicates not significant values.

For a given line of best fit, you computed that  r = 0.6501 using n = 12 data points and the critical value is 0.576. Can the line be used for prediction? Why or why not?

If the scatter plot looks linear then, yes, the line can be used for prediction, because  r > the positive critical value.

Suppose you computed  r = –0.624 with 14 data points. df = 14 – 2 = 12. The critical values are –0.532 and 0.532. Since –0.624 < –0.532, r is significant and the line can be used for prediction

Horizontal number line with values of -0.624, -0.532, and 0.532.

For a given line of best fit, you compute that  r = 0.5204 using n = 9 data points, and the critical value is 0.666. Can the line be used for prediction? Why or why not?

No, the line cannot be used for prediction, because  r < the positive critical value.

Suppose you computed  r = 0.776 and n = 6. df = 6 – 2 = 4. The critical values are –0.811 and 0.811. Since –0.811 < 0.776 < 0.811, r is not significant, and the line should not be used for prediction.

Horizontal number line with values -0.924, -0.532, and 0.532.

–0.811 <  r = 0.776 < 0.811. Therefore, r is not significant.

For a given line of best fit, you compute that  r = –0.7204 using n = 8 data points, and the critical value is = 0.707. Can the line be used for prediction? Why or why not?

Yes, the line can be used for prediction, because  r < the negative critical value.

Suppose you computed the following correlation coefficients. Using the table at the end of the chapter, determine if  r is significant and the line of best fit associated with each r can be used to predict a y value. If it helps, draw a number line.

  • r = –0.567 and the sample size, n , is 19. The df = n – 2 = 17. The critical value is –0.456. –0.567 < –0.456 so r is significant.
  • r = 0.708 and the sample size, n , is nine. The df = n – 2 = 7. The critical value is 0.666. 0.708 > 0.666 so r is significant.
  • r = 0.134 and the sample size, n , is 14. The df = 14 – 2 = 12. The critical value is 0.532. 0.134 is between –0.532 and 0.532 so r is not significant.
  • r = 0 and the sample size, n , is five. No matter what the dfs are, r = 0 is between the two critical values so r is not significant.

For a given line of best fit, you compute that  r = 0 using n = 100 data points. Can the line be used for prediction? Why or why not?

No, the line cannot be used for prediction no matter what the sample size is.

Assumptions in Testing the Significance of the Correlation Coefficient

Testing the significance of the correlation coefficient requires that certain assumptions about the data are satisfied. The premise of this test is that the data are a sample of observed points taken from a larger population. We have not examined the entire population because it is not possible or feasible to do so. We are examining the sample to draw a conclusion about whether the linear relationship that we see between x and y in the sample data provides strong enough evidence so that we can conclude that there is a linear relationship between x and y in the population.

The regression line equation that we calculate from the sample data gives the best-fit line for our particular sample. We want to use this best-fit line for the sample as an estimate of the best-fit line for the population. Examining the scatterplot and testing the significance of the correlation coefficient helps us determine if it is appropriate to do this.

The assumptions underlying the test of significance are:

  • There is a linear relationship in the population that models the average value of y for varying values of x . In other words, the expected value of y for each particular value lies on a straight line in the population. (We do not know the equation for the line for the population. Our regression line from the sample is our best estimate of this line in the population.)
  • The y values for any particular x value are normally distributed about the line. This implies that there are more y values scattered closer to the line than are scattered farther away. Assumption (1) implies that these normal distributions are centered on the line: the means of these normal distributions of y values lie on the line.
  • The standard deviations of the population y values about the line are equal for each value of x . In other words, each of these normal distributions of y values has the same shape and spread about the line.
  • The residual errors are mutually independent (no pattern).
  • The data are produced from a well-designed, random sample or randomized experiment.

The left graph shows three sets of points. Each set falls in a vertical line. The points in each set are normally distributed along the line — they are densely packed in the middle and more spread out at the top and bottom. A downward sloping regression line passes through the mean of each set. The right graph shows the same regression line plotted. A vertical normal curve is shown for each line.

The  y values for each x value are normally distributed about the line with the same standard deviation. For each x value, the mean of the y values lies on the regression line. More y values lie near the line than are scattered further away from the line.

Concept Review

Linear regression is a procedure for fitting a straight line of the form [latex]\displaystyle\hat{{y}}={a}+{b}{x}[/latex] to data. The conditions for regression are:

  • Linear: In the population, there is a linear relationship that models the average value of y for different values of x .
  • Independent: The residuals are assumed to be independent.
  • Normal: The y values are distributed normally for any value of x .
  • Equal variance: The standard deviation of the y values is equal for each x value.
  • Random: The data are produced from a well-designed random sample or randomized experiment.

The slope  b and intercept a of the least-squares line estimate the slope β and intercept α of the population (true) regression line. To estimate the population standard deviation of y , σ , use the standard deviation of the residuals, s .

[latex]\displaystyle{s}=\sqrt{{\frac{{{S}{S}{E}}}{{{n}-{2}}}}}[/latex] The variable ρ (rho) is the population correlation coefficient.

To test the null hypothesis  H 0 : ρ = hypothesized value , use a linear regression t-test. The most common null hypothesis is H 0 : ρ = 0 which indicates there is no linear relationship between x and y in the population.

The TI-83, 83+, 84, 84+ calculator function LinRegTTest can perform this test (STATS TESTS LinRegTTest).

Formula Review

Least Squares Line or Line of Best Fit: [latex]\displaystyle\hat{{y}}={a}+{b}{x}[/latex]

where  a = y -intercept,  b = slope

Standard deviation of the residuals:

[latex]\displaystyle{s}=\sqrt{{\frac{{{S}{S}{E}}}{{{n}-{2}}}}}[/latex]

SSE = sum of squared errors

n = the number of data points

  • OpenStax, Statistics, Testing the Significance of the Correlation Coefficient. Provided by : OpenStax. Located at : http://cnx.org/contents/[email protected]:83/Introductory_Statistics . License : CC BY: Attribution
  • Introductory Statistics . Authored by : Barbara Illowski, Susan Dean. Provided by : Open Stax. Located at : http://cnx.org/contents/[email protected] . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/contents/[email protected]
  • Flashes Safe Seven
  • FlashLine Login
  • Faculty & Staff Phone Directory
  • Emeriti or Retiree
  • All Departments
  • Maps & Directions

Kent State University Home

  • Building Guide
  • Departments
  • Directions & Parking
  • Faculty & Staff
  • Give to University Libraries
  • Library Instructional Spaces
  • Mission & Vision
  • Newsletters
  • Circulation
  • Course Reserves / Core Textbooks
  • Equipment for Checkout
  • Interlibrary Loan
  • Library Instruction
  • Library Tutorials
  • My Library Account
  • Open Access Kent State
  • Research Support Services
  • Statistical Consulting
  • Student Multimedia Studio
  • Citation Tools
  • Databases A-to-Z
  • Databases By Subject
  • Digital Collections
  • Discovery@Kent State
  • Government Information
  • Journal Finder
  • Library Guides
  • Connect from Off-Campus
  • Library Workshops
  • Subject Librarians Directory
  • Suggestions/Feedback
  • Writing Commons
  • Academic Integrity
  • Jobs for Students
  • International Students
  • Meet with a Librarian
  • Study Spaces
  • University Libraries Student Scholarship
  • Affordable Course Materials
  • Copyright Services
  • Selection Manager
  • Suggest a Purchase

Library Locations at the Kent Campus

  • Architecture Library
  • Fashion Library
  • Map Library
  • Performing Arts Library
  • Special Collections and Archives

Regional Campus Libraries

  • East Liverpool
  • College of Podiatric Medicine

hypothesis testing for correlation

  • Kent State University
  • SPSS Tutorials

Pearson Correlation

Spss tutorials: pearson correlation.

  • The SPSS Environment
  • The Data View Window
  • Using SPSS Syntax
  • Data Creation in SPSS
  • Importing Data into SPSS
  • Variable Types
  • Date-Time Variables in SPSS
  • Defining Variables
  • Creating a Codebook
  • Computing Variables
  • Computing Variables: Mean Centering
  • Computing Variables: Recoding Categorical Variables
  • Computing Variables: Recoding String Variables into Coded Categories (Automatic Recode)
  • rank transform converts a set of data values by ordering them from smallest to largest, and then assigning a rank to each value. In SPSS, the Rank Cases procedure can be used to compute the rank transform of a variable." href="https://libguides.library.kent.edu/SPSS/RankCases" style="" >Computing Variables: Rank Transforms (Rank Cases)
  • Weighting Cases
  • Sorting Data
  • Grouping Data
  • Descriptive Stats for One Numeric Variable (Explore)
  • Descriptive Stats for One Numeric Variable (Frequencies)
  • Descriptive Stats for Many Numeric Variables (Descriptives)
  • Descriptive Stats by Group (Compare Means)
  • Frequency Tables
  • Working with "Check All That Apply" Survey Data (Multiple Response Sets)
  • Chi-Square Test of Independence
  • One Sample t Test
  • Paired Samples t Test
  • Independent Samples t Test
  • One-Way ANOVA
  • How to Cite the Tutorials

Sample Data Files

Our tutorials reference a dataset called "sample" in many examples. If you'd like to download the sample dataset to work through the examples, choose one of the files below:

  • Data definitions (*.pdf)
  • Data - Comma delimited (*.csv)
  • Data - Tab delimited (*.txt)
  • Data - Excel format (*.xlsx)
  • Data - SAS format (*.sas7bdat)
  • Data - SPSS format (*.sav)

The bivariate Pearson Correlation produces a sample correlation coefficient, r , which measures the strength and direction of linear relationships between pairs of continuous variables. By extension, the Pearson Correlation evaluates whether there is statistical evidence for a linear relationship among the same pairs of variables in the population, represented by a population correlation coefficient, ρ (“rho”). The Pearson Correlation is a parametric measure.

This measure is also known as:

  • Pearson’s correlation
  • Pearson product-moment correlation (PPMC)

Common Uses

The bivariate Pearson Correlation is commonly used to measure the following:

  • Correlations among pairs of variables
  • Correlations within and between sets of variables

The bivariate Pearson correlation indicates the following:

  • Whether a statistically significant linear relationship exists between two continuous variables
  • The strength of a linear relationship (i.e., how close the relationship is to being a perfectly straight line)
  • The direction of a linear relationship (increasing or decreasing)

Note: The bivariate Pearson Correlation cannot address non-linear relationships or relationships among categorical variables. If you wish to understand relationships that involve categorical variables and/or non-linear relationships, you will need to choose another measure of association.

Note: The bivariate Pearson Correlation only reveals associations among continuous variables. The bivariate Pearson Correlation does not provide any inferences about causation, no matter how large the correlation coefficient is.

Data Requirements

To use Pearson correlation, your data must meet the following requirements:

  • Two or more continuous variables (i.e., interval or ratio level)
  • Cases must have non-missing values on both variables
  • Linear relationship between the variables
  • the values for all variables across cases are unrelated
  • for any case, the value for any variable cannot influence the value of any variable for other cases
  • no case can influence another case on any variable
  • The biviariate Pearson correlation coefficient and corresponding significance test are not robust when independence is violated.
  • Each pair of variables is bivariately normally distributed
  • Each pair of variables is bivariately normally distributed at all levels of the other variable(s)
  • This assumption ensures that the variables are linearly related; violations of this assumption may indicate that non-linear relationships among variables exist. Linearity can be assessed visually using a scatterplot of the data.
  • Random sample of data from the population
  • No outliers

The null hypothesis ( H 0 ) and alternative hypothesis ( H 1 ) of the significance test for correlation can be expressed in the following ways, depending on whether a one-tailed or two-tailed test is requested:

Two-tailed significance test:

H 0 : ρ  = 0 ("the population correlation coefficient is 0; there is no association") H 1 : ρ ≠ 0 ("the population correlation coefficient is not 0; a nonzero correlation could exist")

One-tailed significance test:

H 0 : ρ  = 0 ("the population correlation coefficient is 0; there is no association") H 1 : ρ   > 0 ("the population correlation coefficient is greater than 0; a positive correlation could exist")      OR H 1 : ρ   < 0 ("the population correlation coefficient is less than 0; a negative correlation could exist")

where ρ is the population correlation coefficient.

Test Statistic

The sample correlation coefficient between two variables x and y is denoted r or r xy , and can be computed as: $$ r_{xy} = \frac{\mathrm{cov}(x,y)}{\sqrt{\mathrm{var}(x)} \dot{} \sqrt{\mathrm{var}(y)}} $$

where cov( x , y ) is the sample covariance of x and y ; var( x ) is the sample variance of x ; and var( y ) is the sample variance of y .

Correlation can take on any value in the range [-1, 1]. The sign of the correlation coefficient indicates the direction of the relationship, while the magnitude of the correlation (how close it is to -1 or +1) indicates the strength of the relationship.

  •  -1 : perfectly negative linear relationship
  •   0 : no relationship
  • +1  : perfectly positive linear relationship

The strength can be assessed by these general guidelines [1] (which may vary by discipline):

  • .1 < | r | < .3 … small / weak correlation
  • .3 < | r | < .5 … medium / moderate correlation
  • .5 < | r | ……… large / strong correlation

Note: The direction and strength of a correlation are two distinct properties. The scatterplots below [2] show correlations that are r = +0.90, r = 0.00, and r = -0.90, respectively. The strength of the nonzero correlations are the same: 0.90. But the direction of the correlations is different: a negative correlation corresponds to a decreasing relationship, while and a positive correlation corresponds to an increasing relationship. 

Scatterplot of data with correlation r = -0.90

Note that the r = 0.00 correlation has no discernable increasing or decreasing linear pattern in this particular graph. However, keep in mind that Pearson correlation is only capable of detecting linear associations, so it is possible to have a pair of variables with a strong nonlinear relationship and a small Pearson correlation coefficient. It is good practice to create scatterplots of your variables to corroborate your correlation coefficients.

[1]  Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.

[2]  Scatterplots created in R using ggplot2 , ggthemes::theme_tufte() , and MASS::mvrnorm() .

Data Set-Up

Your dataset should include two or more continuous numeric variables, each defined as scale, which will be used in the analysis.

Each row in the dataset should represent one unique subject, person, or unit. All of the measurements taken on that person or unit should appear in that row. If measurements for one subject appear on multiple rows -- for example, if you have measurements from different time points on separate rows -- you should reshape your data to "wide" format before you compute the correlations.

Run a Bivariate Pearson Correlation

To run a bivariate Pearson Correlation in SPSS, click  Analyze > Correlate > Bivariate .

hypothesis testing for correlation

The Bivariate Correlations window opens, where you will specify the variables to be used in the analysis. All of the variables in your dataset appear in the list on the left side. To select variables for the analysis, select the variables in the list on the left and click the blue arrow button to move them to the right, in the Variables field.

hypothesis testing for correlation

A Variables : The variables to be used in the bivariate Pearson Correlation. You must select at least two continuous variables, but may select more than two. The test will produce correlation coefficients for each pair of variables in this list.

B Correlation Coefficients: There are multiple types of correlation coefficients. By default, Pearson is selected. Selecting Pearson will produce the test statistics for a bivariate Pearson Correlation.

C Test of Significance:  Click Two-tailed or One-tailed , depending on your desired significance test. SPSS uses a two-tailed test by default.

D Flag significant correlations: Checking this option will include asterisks (**) next to statistically significant correlations in the output. By default, SPSS marks statistical significance at the alpha = 0.05 and alpha = 0.01 levels, but not at the alpha = 0.001 level (which is treated as alpha = 0.01)

E Options : Clicking Options will open a window where you can specify which Statistics to include (i.e., Means and standard deviations , Cross-product deviations and covariances ) and how to address Missing Values (i.e., Exclude cases pairwise or Exclude cases listwise ). Note that the pairwise/listwise setting does not affect your computations if you are only entering two variable, but can make a very large difference if you are entering three or more variables into the correlation procedure.

hypothesis testing for correlation

Example: Understanding the linear association between weight and height

Problem statement.

Perhaps you would like to test whether there is a statistically significant linear relationship between two continuous variables, weight and height (and by extension, infer whether the association is significant in the population). You can use a bivariate Pearson Correlation to test whether there is a statistically significant linear relationship between height and weight, and to determine the strength and direction of the association.

Before the Test

In the sample data, we will use two variables: “Height” and “Weight.” The variable “Height” is a continuous measure of height in inches and exhibits a range of values from 55.00 to 84.41 ( Analyze > Descriptive Statistics > Descriptives ). The variable “Weight” is a continuous measure of weight in pounds and exhibits a range of values from 101.71 to 350.07.

Before we look at the Pearson correlations, we should look at the scatterplots of our variables to get an idea of what to expect. In particular, we need to determine if it's reasonable to assume that our variables have linear relationships. Click Graphs > Legacy Dialogs > Scatter/Dot . In the Scatter/Dot window, click Simple Scatter , then click Define . Move variable Height to the X Axis box, and move variable Weight to the Y Axis box. When finished, click OK .

Scatterplot of height and weight with a linear fit line added. Height and weight appear to be reasonably linearly related, albeit with some unusually outlying points.

To add a linear fit like the one depicted, double-click on the plot in the Output Viewer to open the Chart Editor. Click Elements > Fit Line at Total . In the Properties window, make sure the Fit Method is set to Linear , then click Apply . (Notice that adding the linear regression trend line will also add the R-squared value in the margin of the plot. If we take the square root of this number, it should match the value of the Pearson correlation we obtain.)

From the scatterplot, we can see that as height increases, weight also tends to increase. There does appear to be some linear relationship.

Running the Test

To run the bivariate Pearson Correlation, click  Analyze > Correlate > Bivariate . Select the variables Height and Weight and move them to the Variables box. In the Correlation Coefficients area, select Pearson . In the Test of Significance area, select your desired significance test, two-tailed or one-tailed. We will select a two-tailed significance test in this example. Check the box next to Flag significant correlations .

Click OK to run the bivariate Pearson Correlation. Output for the analysis will display in the Output Viewer.

The results will display the correlations in a table, labeled Correlations .

Table of Pearson Correlation output. Height and weight have a significant positive correlation (r=0.513, p < 0.001).

A Correlation of Height with itself (r=1), and the number of nonmissing observations for height (n=408).

B Correlation of height and weight (r=0.513), based on n=354 observations with pairwise nonmissing values.

C Correlation of height and weight (r=0.513), based on n=354 observations with pairwise nonmissing values.

D Correlation of weight with itself (r=1), and the number of nonmissing observations for weight (n=376).

The important cells we want to look at are either B or C. (Cells B and C are identical, because they include information about the same pair of variables.) Cells B and C contain the correlation coefficient for the correlation between height and weight, its p-value, and the number of complete pairwise observations that the calculation was based on.

The correlations in the main diagonal (cells A and D) are all equal to 1. This is because a variable is always perfectly correlated with itself. Notice, however, that the sample sizes are different in cell A ( n =408) versus cell D ( n =376). This is because of missing data -- there are more missing observations for variable Weight than there are for variable Height.

If you have opted to flag significant correlations, SPSS will mark a 0.05 significance level with one asterisk (*) and a 0.01 significance level with two asterisks (0.01). In cell B (repeated in cell C), we can see that the Pearson correlation coefficient for height and weight is .513, which is significant ( p < .001 for a two-tailed test), based on 354 complete observations (i.e., cases with nonmissing values for both height and weight).

Decision and Conclusions

Based on the results, we can state the following:

  • Weight and height have a statistically significant linear relationship ( r =.513, p < .001).
  • The direction of the relationship is positive (i.e., height and weight are positively correlated), meaning that these variables tend to increase together (i.e., greater height is associated with greater weight).
  • The magnitude, or strength, of the association is approximately moderate (.3 < | r | < .5).
  • << Previous: Chi-Square Test of Independence
  • Next: One Sample t Test >>
  • Last Updated: Jul 10, 2024 11:08 AM
  • URL: https://libguides.library.kent.edu/SPSS

Street Address

Mailing address, quick links.

  • How Are We Doing?
  • Student Jobs

Information

  • Accessibility
  • Emergency Information
  • For Our Alumni
  • For the Media
  • Jobs & Employment
  • Life at KSU
  • Privacy Statement
  • Technology Support
  • Website Feedback

Correlation Calculator

Input your values with a space or comma between in the table below

Critical Value

Results shown here

Sample size, n

Sample correlation coefficient, r, standardized sample score.

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

6.3 - testing for partial correlation.

When discussing ordinary correlations we looked at tests for the null hypothesis that the ordinary correlation is equal to zero, against the alternative that it is not equal to zero. If that null hypothesis is rejected, then we look at confidence intervals for the ordinary correlation. Similar objectives can be considered for the partial correlation.

First, consider testing the null hypothesis that a partial correlation is equal to zero against the alternative that it is not equal to zero. This is expressed below:

\(H_0\colon \rho_{jk\textbf{.x}}=0\) against \(H_a\colon \rho_{jk\textbf{.x}}\ne 0\)

Here we will use a test statistic that is similar to the one we used for an ordinary correlation. This test statistic is shown below:

\(t = r_{jk\textbf{.x}}\sqrt{\frac{n-2-c}{1-r^2_{jk\textbf{.x}}}}\)      \(\dot{\sim}\)  \(t_{n-2-c}\)

The only difference between this and the previous one is what appears in the numerator of the radical. Before we just took n - 2. Here we take n - 2 - c , where c is the number of variables upon which we are conditioning. In our Adult Intelligence data, we conditioned on two variables so c would be equal to 2 in this case.

Under the null hypothesis, this test statistic will be approximately t -distributed, also with n - 2 - c degrees of freedom.

We would reject \(H_{o}\colon\) if the absolute value of the test statistic exceeded the critical value from the t -table evaluated at \(\alpha\) over 2:

\(|t| > t_{n-2-c, \alpha/2}\)

Example 6-3: Wechsler Adult Intelligence Data Section  

For the Wechsler Adult Intelligence Data, we found a partial correlation of 0.711879, which we enter into the expression for the test statistic as shown below:

\(t = 0.711879 \sqrt{\dfrac{37-2-2}{1-0.711879^2}}=5.82\)

The sample size is 37, along with the 2 variables upon which we are conditioning is also substituted in. Carry out the math and we get a test statistic of 5.82 as shown above.

Here we want to compare this value to a t -distribution with 33 degrees of freedom for an \(\alpha\) = 0.01 level test. Therefore, we are going to look at the critical value for 0.005 in the table (because 33 does not appear to use the closest df that does not exceed 33 which is 30).  In this case it is 2.75, meaning that \(t _ { ( d f , 1 - \alpha / 2 ) } = t _ { ( 33,0.995 ) } \) is 2.75.

Because \(5.82 > 2.75 = t _ { ( 33,0.995 ) }\), we can reject the null hypothesis, \(H_{o}\) at the \(\alpha = 0.01\) level and conclude that there is a significant partial correlation between these two variables. In particular, we would include that this partial correlation is positive indicating that even after taking into account Arithmetic and Picture Completion, there is a positive association between Information and Similarities.

Confidence Interval for the partial correlation, \(\rho_{jk\textbf{.x}}\) Section  

The procedure here is very similar to the procedure we used for ordinary correlation.

Compute Fisher's transformation of the partial correlation using the same formula as before.

\(z_{jk} = \dfrac{1}{2}\log \left( \dfrac{1+r_{jk\textbf{.X}}}{1-r_{jk\textbf{.X}}}\right) \)

In this case, for a large n , this Fisher transform variable will be possibly normally distributed. The mean is equal to the Fisher transform for the population value for this partial correlation, and the variance is equal to 1 over n-3-c .

\(z_{jk}\)  \(\dot{\sim}\)  \(N \left( \dfrac{1}{2}\log \dfrac{1+\rho_{jk\textbf{.X}}}{1-\rho_{jk\textbf{.X}}}, \dfrac{1}{n-3-c}\right)\)

Compute a \((1 - \alpha) × 100\%\) confidence interval for the Fisher transform correlation. This expression is shown below:

\( \dfrac{1}{2}\log \dfrac{1+\rho_{jk\textbf{.X}}}{1-\rho_{jk\textbf{.X}}}\)

This yields the bounds \(Z_{l}\) and  \(Z_{u}\)  as before.

\(\left(\underset{Z_l}{\underbrace{Z_{jk}-\dfrac{Z_{\alpha/2}}{\sqrt{n-3-c}}}}, \underset{Z_U}{\underbrace{Z_{jk}+\dfrac{Z_{\alpha/2}}{\sqrt{n-3-c}}}}\right)\)

Back transform to obtain the desired confidence interval for the partial correlation - \(\rho_{jk\textbf{.X}}\)

\(\left(\dfrac{e^{2Z_l}-1}{e^{2Z_l}+1}, \dfrac{e^{2Z_U}-1}{e^{2Z_U}+1}\right)\)

Example 6-3: Wechsler Adult Intelligence Data (Steps Shown) Section  

The confidence interval is calculated by substituting the results from the Wechsler Adult Intelligence Data into the appropriate steps below:

Step 1 : Compute the Fisher transform:

\begin{align} Z_{12} &= \dfrac{1}{2}\log \frac{1+r_{12.34}}{1-r_{12.34}}\\[5pt] &= \dfrac{1}{2} \log \frac{1+0.711879}{1-0.711879}\\[5pt] &= 0.89098 \end{align}

Step 2 : Compute the 95% confidence interval for \( \frac{1}{2}\log \frac{1+\rho_{12.34}}{1-\rho_{12.34}}\) :

\begin{align} Z_l &= Z_{12}-Z_{0.025}/\sqrt{n-3-c}\\[5pt] & = 0.89098 - \dfrac{1.96}{\sqrt{37-3-2}}\\[5pt] &= 0.5445 \end{align}

\begin{align} Z_U &= Z_{12}+Z_{0.025}/\sqrt{n-3-c}\\[5pt] &= 0.89098 + \dfrac{1.96}{\sqrt{37-3-2}} \\[5pt] &= 1.2375 \end{align}

Step 3 : Back-transform to obtain the 95% confidence interval for \(\rho_{12.34}\) :

\(\left(\dfrac{\exp\{2Z_l\}-1}{\exp\{2Z_l\}+1}, \dfrac{\exp\{2Z_U\}-1}{\exp\{2Z_U\}+1}\right)\)

\(\left(\dfrac{\exp\{2\times 0.5445\}-1}{\exp\{2\times 0.5445\}+1}, \dfrac{\exp\{2\times 1.2375\}-1}{\exp\{2\times 1.2375\}+1}\right)\)

\((0.4964, 0.8447)\)

Based on this result, we can conclude that we are 95% confident that the interval (0.4964, 0.8447) contains the partial correlation between Information and Similarities scores given scores on Arithmetic and Picture Completion.

  • My Playlists

BYU-Idaho Video

  • Alumni Ambassadors
  • Alumni Profiles
  • Alumni Webcasts
  • Performances
  • Online Learning and Teaching Conference 2020
  • Online Learning Instructors
  • Upward Magazine
  • Career Center
  • Devotional Promos
  • Devotional: ASL
  • Hour with the Eyrings
  • Special Events - Authenticated
  • Special Events Unauthenticated
  • Commencement
  • Audio Recordings
  • Campus Buildings
  • Housing & Student Living
  • Major Discovery
  • I-Belong (Officers)
  • Online Learning

Math 124 Lesson 6.5 - Inference: Hypothesis Test Correlation of Two quantitative Variables

Related media.

IMAGES

  1. Correlation and regression

    hypothesis testing for correlation

  2. PPT

    hypothesis testing for correlation

  3. Hypothesis testing for correlation coefficient r

    hypothesis testing for correlation

  4. PPT

    hypothesis testing for correlation

  5. How To Conduct Hypothesis Testing For A Population Correlation Coefficient

    hypothesis testing for correlation

  6. Correlation hypothesis testing

    hypothesis testing for correlation

VIDEO

  1. Hypothesis Testing 008, Testing of Correlation_01

  2. Hypothesis Testing

  3. Conduct a Linear Correlation Hypothesis Test Using Free Web Calculators

  4. Hypothesis Testing using Correlation

  5. Hypothesis Testing Correlation Coefficient

  6. Hypothesis Testing

COMMENTS

  1. 11.2: Correlation Hypothesis Test

    The two methods are equivalent and give the same result. Method 1: Using the p-value p -value. Method 2: Using a table of critical values. In this chapter of this textbook, we will always use a significance level of 5%, α = 0.05 α = 0.05.

  2. 1.9

    Let's perform the hypothesis test on the husband's age and wife's age data in which the sample correlation based on n = 170 couples is r = 0.939. To test H 0: ρ = 0 against the alternative H A: ρ ≠ 0, we obtain the following test statistic: t ∗ = r n − 2 1 − R 2 = 0.939 170 − 2 1 − 0.939 2 = 35.39. To obtain the P -value, we need ...

  3. 12.1.2: Hypothesis Test for a Correlation

    The t-test is a statistical test for the correlation coefficient. It can be used when x x and y y are linearly related, the variables are random variables, and when the population of the variable y y is normally distributed. The formula for the t-test statistic is t = r (n − 2 1 −r2)− −−−−−−−√ t = r (n − 2 1 − r 2).

  4. 9.4.1

    The test statistic is: t ∗ = r n − 2 1 − r 2 = (0.711) 28 − 2 1 − 0.711 2 = 5.1556. Next, we need to find the p-value. The p-value for the two-sided test is: p-value = 2 P (T> 5.1556) <0.0001. Therefore, for any reasonable α level, we can reject the hypothesis that the population correlation coefficient is 0 and conclude that it is ...

  5. 12.4 Testing the Significance of the Correlation Coefficient

    PERFORMING THE HYPOTHESIS TEST. Null Hypothesis: H 0: ρ = 0 Alternate Hypothesis: H a: ρ ≠ 0 WHAT THE HYPOTHESES MEAN IN WORDS: Null Hypothesis H 0: The population correlation coefficient IS NOT significantly different from zero. There IS NOT a significant linear relationship (correlation) between x and y in the population.; Alternate Hypothesis H a: The population correlation coefficient ...

  6. Pearson Correlation Coefficient (r)

    Revised on February 10, 2024. The Pearson correlation coefficient (r) is the most common way of measuring a linear correlation. It is a number between -1 and 1 that measures the strength and direction of the relationship between two variables. When one variable changes, the other variable changes in the same direction.

  7. 13.2 Testing the Significance of the Correlation Coefficient

    Alternate Hypothesis H a: The population correlation coefficient is significantly different from zero. There is a significant linear relationship (correlation) between X 1 and X 2 in the population. Drawing a Conclusion There are two methods of making the decision concerning the hypothesis.

  8. Conducting a Hypothesis Test for the Population Correlation Coefficient

    Learn how to conduct a hypothesis test for the population correlation coefficient ρ using the t-test statistic and the P-value. See examples of how to apply this test to different research questions and compare it with other tests for linear relationships.

  9. Hypothesis Testing: Correlations

    We perform a hypothesis test of the "significance of the correlation coefficient" to decide whether the linear relationship in the sample data is strong enough to use to model the relationship in the population. The hypothesis test lets us decide whether the value of the population correlation coefficient. \rho ρ.

  10. PDF Lecture 2: Hypothesis testing and correlation

    Lecture 2: Hypothesis testing and correlation. 1. Exploring a more complex dataset: one variable, two conditions - Suppose we measure a quantity not just for one condition (which was the subject of Lecture 1), but for two conditions. For example, suppose we measure the heights of male adults and the heights of female adults.

  11. Hypothesis Test for Correlation

    The hypothesis test lets us decide whether the value of the population correlation coefficient ρ is "close to zero" or "significantly different from zero.". We decide this based on the sample correlation coefficient r and the sample size n. If the test concludes that the correlation coefficient is significantly different from zero, we ...

  12. SPSS Correlation Analyis

    Null Hypothesis. A correlation test (usually) tests the null hypothesis that the population correlation is zero. Data often contain just a sample from a (much) larger population: I surveyed 100 customers (sample) but I'm really interested in all my 100,000 customers (population). Sample outcomes typically differ somewhat from population outcomes.

  13. Testing the Significance of the Correlation Coefficient

    The correlation coefficient, r, tells us about the strength and direction of the linear relationship between x and y.However, the reliability of the linear model also depends on how many observed data points are in the sample. We need to look at both the value of the correlation coefficient r and the sample size n, together.. We perform a hypothesis test of the "significance of the ...

  14. SPSS Tutorials: Pearson Correlation

    The null hypothesis (H 0) and alternative hypothesis (H 1) of the significance test for correlation can be expressed in the following ways, ... You can use a bivariate Pearson Correlation to test whether there is a statistically significant linear relationship between height and weight, and to determine the strength and direction of the ...

  15. Correlation Hypothesis Testing

    A Level Maths revision tutorial video.For the full list of videos and more revision resources visit www.mathsgenie.co.uk.

  16. Hypothesis Testing for Correlation

    Topic Questions. Revision Notes. Chemistry. ChemistryLast Exams 2024SL. Topic Questions. Revision notes on 2.5.2 Hypothesis Testing for Correlation for the Edexcel A Level Maths: Statistics syllabus, written by the Maths experts at Save My Exams.

  17. Pearson correlation coefficient

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name. [verification needed]

  18. 12.2.1: Hypothesis Test for Linear Regression

    The hypotheses are: Find the critical value using dfE = n − p − 1 = 13 for a two-tailed test α = 0.05 inverse t-distribution to get the critical values ± 2.160. Draw the sampling distribution and label the critical values, as shown in Figure 12-14. Figure 12-14: Graph of t-distribution with labeled critical values.

  19. 12.5: Testing the Significance of the Correlation Coefficient

    The p-value is calculated using a t -distribution with n − 2 degrees of freedom. The formula for the test statistic is t = r n−2√ 1−r2√. The value of the test statistic, t, is shown in the computer or calculator output along with the p-value. The test statistic t has the same sign as the correlation coefficient r.

  20. Correlation Hypothesis Test Calculator for r

    Discover the power of statistics with our free hypothesis test for Pearson correlation coefficient (r) on two numerical data sets. Our user-friendly calculator provides accurate results to determine the strength and significance of relationships between variables. Uncover valuable insights from your data and make informed decisions with ease. Try our hassle-free statistics calculator now!

  21. 6.3

    First, consider testing the null hypothesis that a partial correlation is equal to zero against the alternative that it is not equal to zero. This is expressed below: H 0: ρ j k.x = 0 against H a: ρ j k.x ≠ 0. Here we will use a test statistic that is similar to the one we used for an ordinary correlation. This test statistic is shown below:

  22. Math 124 Lesson 6.5

    Math 124 Lesson 6.5 - Inference: Hypothesis Test Correlation of Two quantitative Variables . From Online Learning Media likes views comments. Related Media. Details; Back. Zoom Recording ID: 3620473522 UUID: 1z6xmOAnT3+Y4uYCR2vKYQ== Meeting Time: 2024-07-31 09:37:09pmGMT. Tags. Contact 525 South Center St. Rexburg ...

  23. 10.1: Testing the Significance of the Correlation Coefficient

    The p-value is calculated using a t -distribution with n − 2 degrees of freedom. The formula for the test statistic is t = r√n − 2 √1 − r2. The value of the test statistic, t, is shown in the computer or calculator output along with the p-value. The test statistic t has the same sign as the correlation coefficient r.