• Science, Tech, Math ›
  • Chemistry ›

How to Calculate Experimental Error in Chemistry

scanrail / Getty Images

  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

Error is a measure of accuracy of the values in your experiment. It is important to be able to calculate experimental error, but there is more than one way to calculate and express it. Here are the most common ways to calculate experimental error:

Error Formula

In general, error is the difference between an accepted or theoretical value and an experimental value.

Error = Experimental Value - Known Value

Relative Error Formula

Relative Error = Error / Known Value

Percent Error Formula

% Error = Relative Error x 100%

Example Error Calculations

Let's say a researcher measures the mass of a sample to be 5.51 grams. The actual mass of the sample is known to be 5.80 grams. Calculate the error of the measurement.

Experimental Value = 5.51 grams Known Value = 5.80 grams

Error = Experimental Value - Known Value Error = 5.51 g - 5.80 grams Error = - 0.29 grams

Relative Error = Error / Known Value Relative Error = - 0.29 g / 5.80 grams Relative Error = - 0.050

% Error = Relative Error x 100% % Error = - 0.050 x 100% % Error = - 5.0%

  • Dilution Calculations From Stock Solutions
  • Here's How to Calculate pH Values
  • How to Calculate Percent
  • Tips and Rules for Determining Significant Figures
  • Molecular Mass Definition
  • 10 Things You Need To Know About Chemistry
  • Chemistry Word Problem Strategy
  • Chemistry 101 - Introduction & Index of Topics
  • What Is pH and What Does It Measure?
  • General Chemistry Topics
  • Understanding Experimental Groups
  • Molarity Definition in Chemistry
  • Teach Yourself Chemistry Today
  • What Is the Difference Between Molarity and Normality?
  • How to Find pOH in Chemistry
  • What Is a Mole Fraction?

LEARN STATISTICS EASILY

LEARN STATISTICS EASILY

Learn Data Analysis Now!

LEARN STATISTICS EASILY LOGO 2

What is: Experimental Error

What is experimental error.

Experimental error refers to the difference between the measured value and the true value of a quantity in scientific experiments. It is an inherent aspect of any experimental process, arising from various sources such as measurement inaccuracies, environmental factors, and limitations in the experimental design. Understanding experimental error is crucial for data analysis and interpretation in fields like statistics, data science, and research.

 width=

Ad description. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Types of Experimental Error

There are two primary types of experimental error: systematic error and random error. Systematic errors are consistent and repeatable inaccuracies that occur due to flaws in the measurement system or experimental setup. In contrast, random errors are unpredictable fluctuations that can arise from various sources, including human error, environmental changes, or limitations in measurement tools. Both types of errors can significantly impact the reliability of experimental results.

Systematic Error Explained

Systematic error can lead to biased results, as it consistently skews measurements in a particular direction. This type of error can often be identified and corrected through calibration of instruments or adjustments in the experimental procedure. For instance, if a scale consistently reads 0.5 grams too high, all measurements taken with that scale will be systematically biased. Recognizing and mitigating systematic errors is essential for achieving accurate and reliable data.

Random Error Explained

Random error, on the other hand, is characterized by its unpredictable nature. It can arise from various factors, such as fluctuations in environmental conditions, variations in the measurement process, or even human error during data collection. Unlike systematic errors, random errors can be reduced by increasing the number of observations or measurements, as the average of a large number of trials tends to converge on the true value. Understanding random error is vital for statistical analysis and hypothesis testing.

Impact of Experimental Error on Data Analysis

Experimental error can significantly affect the outcomes of data analysis and the conclusions drawn from experimental results. When errors are not accounted for, they can lead to incorrect interpretations and potentially flawed decisions based on the data. Researchers must employ statistical methods to quantify and minimize the impact of experimental error, ensuring that their findings are robust and reliable.

Quantifying Experimental Error

Quantifying experimental error involves calculating the uncertainty associated with measurements. This can be done using various statistical techniques, such as calculating the standard deviation, confidence intervals, and error propagation. These methods help researchers understand the degree of uncertainty in their measurements and provide a framework for making informed decisions based on the data collected.

Reducing Experimental Error

To enhance the accuracy of experimental results, researchers can implement several strategies to reduce experimental error. These include improving measurement techniques, using high-quality instruments, standardizing procedures, and conducting repeated trials. By systematically addressing potential sources of error, researchers can improve the reliability of their findings and contribute to the overall integrity of scientific research.

Role of Experimental Error in Scientific Research

Experimental error plays a critical role in scientific research, as it influences the validity and reliability of experimental findings. Acknowledging and addressing experimental error is essential for maintaining the integrity of scientific inquiry. Researchers must be transparent about the limitations of their studies and the potential sources of error, allowing for a more accurate interpretation of results and fostering trust in the scientific community.

Conclusion on Experimental Error

In summary, understanding experimental error is fundamental for anyone involved in statistics, data analysis, and data science. By recognizing the types of errors, quantifying their impact, and implementing strategies to minimize them, researchers can enhance the accuracy and reliability of their experimental results. This knowledge is crucial for making informed decisions based on data and advancing scientific knowledge.

  • WolframAlpha.com
  • WolframCloud.com
  • All Sites & Public Resources...

equation experimental error

  • Wolfram|One
  • Mathematica
  • Wolfram|Alpha Notebook Edition
  • Finance Platform
  • System Modeler
  • Wolfram Player
  • Wolfram Engine
  • WolframScript
  • Enterprise Private Cloud
  • Application Server
  • Enterprise Mathematica
  • Wolfram|Alpha Appliance
  • Corporate Consulting
  • Technical Consulting
  • Wolfram|Alpha Business Solutions
  • Data Repository
  • Neural Net Repository
  • Function Repository
  • Wolfram|Alpha Pro
  • Problem Generator
  • Products for Education
  • Wolfram Cloud App
  • Wolfram|Alpha for Mobile
  • Wolfram|Alpha-Powered Apps
  • Paid Project Support
  • Summer Programs
  • All Products & Services »
  • Wolfram Language Revolutionary knowledge-based programming language. Wolfram Cloud Central infrastructure for Wolfram's cloud products & services. Wolfram Science Technology-enabling science of the computational universe. Wolfram Notebooks The preeminent environment for any technical workflows. Wolfram Engine Software engine implementing the Wolfram Language. Wolfram Natural Language Understanding System Knowledge-based broadly deployed natural language. Wolfram Data Framework Semantic framework for real-world data. Wolfram Universal Deployment System Instant deployment across cloud, desktop, mobile, and more. Wolfram Knowledgebase Curated computable knowledge powering Wolfram|Alpha.
  • All Technologies »
  • Aerospace & Defense
  • Chemical Engineering
  • Control Systems
  • Electrical Engineering
  • Image Processing
  • Industrial Engineering
  • Mechanical Engineering
  • Operations Research
  • Actuarial Sciences
  • Bioinformatics
  • Data Science
  • Econometrics
  • Financial Risk Management
  • All Solutions for Education
  • Machine Learning
  • Multiparadigm Data Science
  • High-Performance Computing
  • Quantum Computation Framework
  • Software Development
  • Authoring & Publishing
  • Interface Development
  • Web Development
  • All Solutions »
  • Wolfram Language Documentation
  • Fast Introduction for Programmers
  • Videos & Screencasts
  • Wolfram Language Introductory Book
  • Webinars & Training
  • Support FAQ
  • Wolfram Community
  • Contact Support
  • All Learning & Support »
  • Company Background
  • Wolfram Blog
  • Careers at Wolfram
  • Internships
  • Other Wolfram Language Jobs
  • Wolfram Foundation
  • Computer-Based Math
  • A New Kind of Science
  • Wolfram Technology for Hackathons
  • Student Ambassador Program
  • Wolfram for Startups
  • Demonstrations Project
  • Wolfram Innovator Awards
  • Wolfram + Raspberry Pi
  • All Company »
  • Wolfram|Alpha Notebook Edition
  • Mobile Apps
  • Wolfram Workbench
  • Volume & Site Licensing
  • View all...
  • For Customers
  • Online Store
  • Product Registration
  • Product Downloads
  • Service Plans Benefits
  • User Portal
  • Your Account
  • Customer Service
  • Get Started with Wolfram
  • Fast Introduction for Math Students
  • Public Resources
  • Wolfram|Alpha
  • Resource System
  • Connected Devices Project
  • Wolfram Data Drop
  • Wolfram Science
  • Computational Thinking
  • About Wolfram
  • Legal & Privacy Policy

COMMENTS

  1. Error & Uncertainty

    An error is the difference between a value or quantity obtained in an experiment and an accepted or literature value for an experiment. There are two types of errors in experiments, random errors and systematic errors. …

  2. What is: Experimental Error

    Experimental error refers to the difference between the measured value and the true value of a quantity in scientific experiments. It is an inherent aspect of any experimental process, …

  3. Percent Error Calculator

    The Percent Error Calculator calculates the difference between between an experimental or observed value and a theoretical actual value. It creates a ratio of the difference relative to the actual value and gives it as a …

  4. Experimental Errors and Error Analysis

    The object of a good experiment is to minimize both the errors of precision and the errors of accuracy. Usually, a given experiment has one or the other type of error dominant, and the experimenter devotes the most effort toward reducing …

  5. Measurement and Error Analysis

    Table A.1: Experimental error on the thickness of a glass slab. The resolution lets us place an upper bound on the unobservable but present random fluctuations in the measured quantity.

  6. Sources of Error in Science Experiments

    Learn why all science experiments have error, how to calculate it, and the sources and types of errors you should report.