• Website Design & Development Services
  • Startup Branding
  • Paid Marketing
  • Organic Marketing
  • Market Research
  • Business Plans
  • Pitch Decks
  • Financial Forecast
  • Industry Market Research Reports
  • Social Media & Website Guides
  • Case Studies
  • Services Marketing Website Design & Development Services Startup Branding Paid Marketing Organic Marketing Consulting Market Research Business Plans Pitch Decks Financial Forecast
  • About Resources Articles Templates Industry Market Research Reports Social Media & Website Guides Case Studies Team

Palm Kernel Oil Production Business Plan Template

Explore Options to Get a Business Plan.

Palm Kernel Oil Production business plan template

Are you interested in starting your own Palm Kernel Oil Production Business?

palm kernel oil business plan

Introduction

Global market size, target market, business model, competitive landscape, legal and regulatory requirements, financing options, marketing and sales strategies, operations and logistics, human resources & management, why write a business plan.

Why write a business plan for Palm Kernel Oil Production? A business plan is an essential tool for any business, and it holds particular importance for the production of palm kernel oil. Here are some reasons why it is necessary to have a well-written business plan for this industry: 1. Articulate and flesh out business goals and objectives: A business plan allows you to clearly define and understand the goals and objectives of your palm kernel oil production business. It helps you to identify your target market, production process, and financial goals. 2. Provides a roadmap for the business: A business plan serves as a roadmap for your business, outlining the steps you need to take to achieve your goals. It helps you to stay focused and on track, making it easier to make decisions and adapt to changes in the market. 3. Communicate vision to stakeholders: A well-written business plan can serve as a tool to communicate the vision of your business to employees, investors, and other stakeholders. It helps them to understand the purpose and mission of your business, which can increase their confidence and support in your venture. 4. Affordable and straightforward: Writing a business plan is a relatively affordable and straightforward way to ensure the success of your business. It allows you to conduct thorough research and analysis, which can help you make informed decisions and avoid costly mistakes. 5. Understand competition and differentiate: A business plan enables you to conduct a thorough analysis of your competition and understand how your palm kernel oil production business can differentiate itself in the market. This can help you to create a unique selling proposition and stand out from your competitors. 6. Better understand customers: Conducting a customer analysis is a crucial part of writing a business plan. It helps you to understand your target market's needs, preferences, and behaviors, which can help you to create products and services that meet their demands. 7. Determine financial needs: A well-written business plan allows you to determine the financial needs of your business, including how much capital is required to start and sustain operations. This information can be invaluable when seeking funding from investors or lenders. 8. Improve revenues and strategy: Writing a business plan involves analyzing your business model and identifying any potential gaps or areas for improvement. This allows you to fine-tune your strategy and identify opportunities for increasing revenues and profitability. 9. Attract investors and partners: A comprehensive business plan is an excellent tool for attracting potential investors and partners to your palm kernel oil production business. It allows them to understand your business and its potential for success, which can increase their interest and willingness to invest. 10. Position your brand: A business plan helps you to understand your company's role in the marketplace and how to position your brand effectively. This can help you to create a strong brand identity and attract customers to your products. 11. Uncover new opportunities: The process of brainstorming and drafting a business plan can help you to uncover new opportunities for your business. It allows you to think creatively and come up with new ideas for products, services, and marketing strategies. 12. Measure growth and success: A business plan allows you to track your business's growth and success by comparing actual results to the forecasts and assumptions made in the plan. This can help you to identify any discrepancies and take corrective action to ensure the long-term success of your business. In summary, a well-written business plan is crucial for the success and sustainability of a palm kernel oil production business. It provides a clear roadmap, allows for informed decision-making, and can attract investors and partners, making it an essential tool for any business owner in this industry.

Business plan content

Business Plan Components for Palm Kernel Oil Production: 1. Executive Summary: This is a brief overview of the entire business plan, summarizing the key points and objectives of the business. 2. Company Overview: This section provides information about the company, such as its legal structure, location, and mission statement. 3. Industry Analysis: This section analyzes the current state of the palm kernel oil production industry, including market trends, competition, and potential challenges. 4. Consumer Analysis: This section identifies the target market for the business, including their demographics, needs, and preferences. 5. Competitor Analysis & Advantages: Here, you will list and analyze your competitors, their strengths and weaknesses, and how your business will differentiate itself from them. 6. Marketing Strategies & Plan: This section outlines the marketing strategies that the business will use to reach its target market, such as advertising, promotions, and pricing. 7. Plan of Action: This section details the steps and timeline for implementing the business plan, including hiring, production, and marketing plans. 8. Management Team: This section introduces the key members of the management team, their roles, and their qualifications. 9. Financial Plan: This section includes financial projections for the business, such as startup costs, revenue forecasts, and projected profits. 10. Appendix: This section includes any additional documents or information that support the business plan, such as resumes, market research data, and legal documents.

Instructions for the business plan template

Instructions for the Business Plan Template: 1. Download the Palm Kernel Oil Production Business Plan Template from our website. 2. Open the template in Microsoft Word or any other word processing software. 3. The template contains instructions in red font throughout the document. These instructions will guide you through each section of the business plan. 4. Some sections may also have tips and suggestions in blue font to help you complete the plan. 5. Start by filling out the basic information about your Palm Kernel Oil Production business, such as the name, location, and mission statement. 6. The template includes sections for Executive Summary, Business Description, Market Analysis, Marketing Strategy, Organization and Management, and Product/Service Line. Fill out each section with information about your business. 7. The template also includes a section for Financial Forecast, which is essential for any business plan. This section may require some research and basic knowledge of financial projections. If you need assistance with this section, please schedule a complimentary consultation with one of our consultants. 8. As you complete each section, make sure to save your progress. 9. Once you have finished filling out the entire template, review it and make any necessary changes or additions. 10. Finally, save the completed business plan and use it to guide your Palm Kernel Oil Production business. We hope this template helps you create a comprehensive and professional business plan for your Palm Kernel Oil Production business. If you have any further questions or need assistance, please do not hesitate to reach out to us for help.

Ongoing business planning

Ongoing business planning is crucial for the success and growth of a Palm Kernel Oil Production business. It allows business owners to regularly assess their current strategies, make necessary adjustments, and set new goals for the future. This continuous process of planning and evaluation helps to ensure that the business stays competitive and adapts to the ever-changing market conditions. One of the main reasons why ongoing business planning is important is because it allows businesses to stay relevant and responsive to their customers' needs and demands. As the market evolves, consumer preferences and buying behaviors also change. By regularly reviewing and updating the business plan, a Palm Kernel Oil Production business can identify any shifts in the market and make necessary changes to their products or services to meet the demand. Moreover, ongoing business planning helps to identify potential risks and challenges that the business may face in the future. By regularly assessing the market and competition, businesses can anticipate potential threats and develop contingency plans to mitigate them. This proactive approach can save the business from significant losses and ensure its sustainability in the long run. Another advantage of ongoing business planning is that it helps to track the progress and performance of the business. By setting measurable goals and regularly reviewing them, business owners can identify areas where they are excelling and areas that need improvement. This allows them to make informed decisions and take necessary actions to drive the business towards success. Furthermore, ongoing business planning is essential for securing funding and investments. Investors and lenders often require updated business plans to assess the viability and potential of a business before investing their money. By regularly updating the business plan, businesses can demonstrate their growth and potential, making them more attractive to potential investors. In conclusion, ongoing business planning is crucial for the success and growth of a Palm Kernel Oil Production business. It allows businesses to stay relevant, anticipate potential risks, track progress, and secure investments. Therefore, it should be treated as a continuous process and given the necessary attention and resources to ensure the long-term success of the business.

Bespoke business plan services

Looking for a Tailored Business Plan for your Palm Kernel Oil Production Business?

"Welcome to our business plan template company! We are a leading startup business consulting firm based in London, United Kingdom. Our team has extensive experience working with companies in various industries, including the Palm Kernel Oil Production industry. We understand the challenges of starting a new business and the importance of having a solid business plan. That's why we offer a range of business plan templates to help entrepreneurs like you succeed. Our business plan templates are the result of years of startup fundraising and operational experience, and can be easily completed by business owners of any level of expertise. In addition to our business plan templates, we also offer a free 30-minute business consultation to address any specific questions you may have about starting your Palm Kernel Oil Production business. Our team of consultants has worked with over 300 startups from all around the world and has helped raise over $100 million from various sources. Our business plan templates also come with additional resources, such as investor lists and Angel Investor introductions, to help you secure funding for your business. We believe that with the right tools and guidance, any business can succeed. So whether you're a budding entrepreneur or a seasoned business owner, our business plan templates are designed to help you on your business growth journey. Download our business plan template today and take the first step towards turning your business idea into a successful reality."

Business plan template FAQ

Q: What is a Palm Kernel Oil Production business plan template? A: A Palm Kernel Oil Production business plan template is a document that outlines the key elements of a successful palm kernel oil production business. It includes sections on market analysis, marketing and sales strategies, financial projections, and operational plans. Q: Why do I need a business plan template for my Palm Kernel Oil Production business? A: A business plan template provides a roadmap for your business and helps you to identify potential challenges and opportunities. It also serves as a tool to attract investors or secure funding from financial institutions. Q: Is the business plan template customizable? A: Yes, the business plan template is fully customizable to suit the specific needs of your palm kernel oil production business. You can add or remove sections, change the formatting, and edit the content to fit your business model. Q: Can I use this template for any type of Palm Kernel Oil Production business? A: Yes, the template is designed to be used for any type of palm kernel oil production business, including small-scale or large-scale operations. Q: Do I need any specialized software to use the template? A: No, the template is in a user-friendly Word document format that can be easily edited using any word processing software. Q: Can I use the template for multiple business plans? A: Yes, you can use the template for multiple business plans or update it as your business grows and evolves. Q: What type of financial projections are included in the template? A: The template includes financial projections such as income statements, balance sheets, and cash flow statements to help you forecast your business's financial performance. Q: Are there any additional resources or tools included in the template? A: Yes, the template includes links to additional resources and tools that can help you further develop your business plan, such as market research reports, industry statistics, and financial calculators. Q: Is customer support available if I have questions or need assistance? A: Yes, customer support is available to answer any questions you may have or provide assistance with using the template.

  • Business Ideas
  • Startup Plans
  • Advertising

How To Start Palm Kernel Oil Production Business

  • by Olaoluwa
  • April 29, 2023 August 28, 2024

If you’re planning on starting this enterprise, you’ll need the tips or guide provided in this palm kernel oil production Business Plan.

If you’re into food processing , one of the things you should know is the need to have your business structured.

This is only possible when there’s a plan of action. The business plan systematically lays out the processes of growth, sets a clear and achievable goal as well as charts the path towards sustainability.

This plan has been written specifically to help entrepreneurs put together a comprehensive plan for their businesses.

Here is a business plan for palm oil processing .

PALM KERNEL OIL PROCESSING BUSINESS PLAN

How your palm kernel oil production business plan unfolds is crucial. Its systematic arrangement helps to coordinate your points.

These points are key sections within the plan which address different aspects of the business. They include the executive summary and the company description section.

That’s not all.

Other equally important sections of the plan include the products & services section, market analysis, strategy & implementation, organization & management as well as financial plan & projections.

At this point, we’ll go into the basics of what should follow under each of these sections.

i. Executive Summary

The name alone conveys its meaning. The executive summary section provides an overview of your palm kernel oil production business plan.

Just like the plan, putting together the executive summary is a painstaking process that seeks to condense the key aspects of the plan to make it evident to the reader.

The executive summary should be able to stir the interest of an investor to consider the business idea as being worthy of attention. In other words, your executive summary should be able to hold the attention of your audience to make them want to read more.

The executive summary appears first in the palm kernel oil business production business plan.

It contains key sections such as the business name & location, the products & services offered, and the mission & vision statements.

Other key inclusions are the specific purpose of the plan.

Business Name & Location

Without a name, your business will be considered non-existent.

For a real shot at growth, you’ll need to give your business a name. This is introduced together with the business’s location. Where are your operations coordinated from?

Location is important to business and you should state why such is beneficial to your palm kernel oil production business.

Products & Services Offered

Here, anyone reading through your executive summary should know the basic products and services offered. It’s a no-brainer that your products will be derived from palm kernel fruits. Nevertheless, have all such products listed.

How beneficial are such products to your clients?

A dedicated section is provided for all the tiny details regarding the products and services being offered. Here, you’ll need to include any other services rendered by your business.

Mission & Vision Statements

The mission and vision statements of your palm kernel oil production business provide a clear direction the business is headed to. The mission statement relays your company’s primary objectives and purpose clearly and concisely.

The vision statement on the other hand focuses on your aspirations and goals. These are written in a manner that easily reveals how passionate you are about achieving set objectives.

In a nutshell, the vision statement should be inspirational and achievable.

Purpose of the Plan

The purpose of the plan is key to its attainment.

What do you want to achieve with our palm kernel oil production business plan? Is it to raise funding and set growth strategies in place?

These should be clearly stated to ensure easy comprehension by your audience.

ii. Company Description

This is where details about your palm kernel oil production business are fully unveiled.

Here, you want to explain who you are, how the business operates as well as set goals you wish to accomplish. So, what legal structure are you adopting for the business?

Have a brief history included? The company description section should also touch on the needs your palm kernel oil product will satisfy. A summary of your products and services including customers and suppliers should be given.

Write a summary of company growth with the market and financial highlights included. Last but not least, provide information about your short and long-term goals.

iii. Products & Services

This is the point where you describe all products and services offered by your palm kernel oil production business.

In describing such products and services, you want to emphasize customer benefits.

Also, you’ll need to include the market role of your products and the clear advantages it has over those of your competitors.

iv. Market Analysis

The market analysis section is where you demonstrate industry knowledge.

Here, a sketch of target customer segments with size and demographics is added. This includes a description of the industry and its outlook backed by statistics.

Providing historical, current & projected marketing data for your products and services will be in order. Evaluate your competitor’s strengths and weaknesses too.

v. Strategy & Implementation

The sales and marketing strategies being adopted for your palm kernel oil business are crucial. You need to explain how the business will be promoted or marketed.

Also to be included are details on pricing, costs, promotions, and distribution.

How will the company operate? Include details about its operational cycle. What are your sources of labor?

vi. Organization & Management

The quality of organization, as well as management, determines the success of your palm kernel oil production business.

You’ll unveil your company’s organizational structure with a focus on the key departments, employees, owners, as well as profiles of your management team.

vii. Financial Plan & Projections

The financial plan & projections section takes a detailed look at the financial statements.

Here, the help of a financial expert is necessary for a thorough job.

Key aspects to be analyzed include the historical financial data, realistic prospective financial information as well as a brief analysis of your financial data.

There you have it! With these sections adequately covered, your plan should be well written and enhance the realization of set objectives.

More importantly, its detailed implementation would ensure you’re on track to achieving your goals.

Related Posts

  • How To Start Palm Oil Processing Business
  • Palm Oil Business - Start Buying, Selling And Processing Red Oil
  • How To Start Transportation Business
  • How To Start Food Business
  • How To Start Healthcare Business

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

How to Start a Palm Oil Production Business?

Explore our guide on starting a palm oil production business. Dive into each step, from extraction to purification, for a clear understanding of Starting a Business in Palm Oil Manufacturing.

Discover essential steps to launch a successful palm oil production business. From understanding market trends to setting up processing units, get insights and tips on starting a lucrative palm oil venture.

Palm oil derived from the fruits of African oil palms that thrives in tropical rainforest areas. They are similar to sunflower or rapeseed oil but more widely used.

These oil palms flourish in the humid tropics, especially 10 degrees north and south of the equator. Originally from West and South-West Africa, they're now cultivated and farmed to increase the production of palm oil. You'll find palm oil in many African and Brazilian dishes, as well as in cookies, margarine, and chocolate.

By the way, do you know why palm oil is good for cooking? It's not excessively saturated, contains no linolenic acid, and is high in natural vitamin E – making it ideal for frying and grilling. Hence, it's a top choice in kitchens.

The oil extracts from the pulp of the oil palm tree's fruit, which is reddish due to beta-carotene. The fruit is similar to the size of a large olive, contains a single seed, used to make palm kernel oil. Each palm fruit contains about 30-35% oil.

Palm oil is the second most produced edible oil globally. Australia imports around 130,000 tons annually. Indonesia and Malaysia lead in exporting, while India, China, the United States, European Union, and Pakistan are major importers.

Besides cooking, palm oil has medicinal uses, like relieving stomach upsets and promoting eye health with its vitamin A. However, be cautious – studies link palm oil to cholesterol.

Now, let's talk business. The palm oil industry is a money-making machine. While many chase white-collar jobs, the wise ones tap into the agricultural sector's potential. If you're seeking a step-by-step guide to palm oil success, keep reading. Your journey into the palm oil business is about to begin.

So let's start with the market research!

Palm Oil Industry Market Research

India palm oil market (2015).

  • Overview : Valued at USD 5.16 billion, driven by population growth and economic advancements.
  • Growth Factors : Massive potential with 100% FDI, financial aid, and 95% import reliance.
  • Consumption Landscape : Palm oil holds a 40% consumption share in India.

Global Palm Oil Market

  • Market Size (2021) : USD 63.65 Billion.
  • Revenue forecast (2030) : USD 96.95 Billion
  • CAGR : 5.0% from 2022 - 2030
  • Projections (2024) : Expected to exceed 85 million metric tons, driven by sustainability and global demand.
  • Challenges : Environmental concerns and deforestation impact expansion.

Global Consumption Trends

  • Global Consumers : India, Indonesia, and China are major consumers.
  • Diverse Applications : Rising demand in food, non-food sectors, and a shift to sustainable production.

Business Preparation and Market Investigation

  • Preliminary Stage : Early market investigation for turnkey palm oil factory establishment.
  • Success Factors : Research, understanding business nature, competitor analysis, and price awareness are vital.
  • Influence of Income and Population: Demand rises with income and population growth.
  • Competitor Insight : Essential for project reports and business plans.

Ideal site for a palm oil production plant?

Finding the location to start your palm oil production doesn't require a huge space – it depends on how much palm oil production you're planning.

Aspect Details
Space Requirement Small-scale palm oil refinery machine setup needs around 100 sqm, larger setup 3-15 acres.
Essentials Ensure water and electricity at your chosen spot. Power: 500-2000 KVA for machines.
Manpower Crew of 20-150 people depending on plant size.
Water Usage Aim for 15-50 tons per hour for smooth operations.

A small scale palm oil mill plant may consist of only a few palm oil milling machines, while a larger scale palm oil processing plant may include a larger number of machines, as well as additional equipment such as conveyor belts and storage tanks .

In some cases, a complete palm oil processing machine may require a separate space to house the machinery and equipment.

Furthermore, To thrive in this business, start by reaching out to various equipment suppliers. Once you've gathered contacts, delve into preliminary discussions with the palm oil milling equipment and industrial spares manufacturer . Confirm the product prices, grasp the land space required, and understand the specifications for Starting a palm oil processing company.

Palm Oil Extraction Machine

Now, let's talk about picking the right machine to get palm oil. Once you've decided on the location, the next big thing is choosing a palm oil extraction machine. This step is crucial in the palm oil production business plan .

There are different machines out there, so take your time comparing prices and getting feedback from others in the industry before making your final choice. The best palm oil comes from using the right equipment for pressing and refining.

Below we have combined a table presenting machines/equipment used in the palm Oil extraction process.

Machine/Equipment Function
Fruit Reception Temporary storage and unloading of fresh palm fruit bunches from palm plantation.
Sterilizer

Softens and sterilizes fruit bunches using high-temperature steam (145°C).

Burns hot water to generate steam, sterilization time 90-120 minutes. heated by steam, fermentation time 60-90 minutes.
heated by a peripheral heating coil, sterilization time 60-90 minutes.

Palm Fruit Thresher

Separates palm fruit from bunches;

Capacity of 500kg/h Capacity ranges from 1-2t/h to 15t/h.
Digester Crushes palm pulp and breaks cell structure for effective oil extraction; horizontal and vertical options available based on factory design.
Presser Screw palm oil press machines extract oil from palm fruit; options include single and double screw machines based on processing capacity.
Employed after pressing to dissolve remaining oil from palm fruit residue using solvents like hexane, ensuring a thorough extraction for high-quality palm oil.
Oil Clarification Station Includes vibrating screen, crude oil clarification tank, and plate filter to filter impurities and provide clean crude oil for storage.
Bleacher Removes color pigments and impurities during the refining process, enhancing the appearance and purity of the oil.
Deodorizer Eliminates unwanted odors and flavors, resulting in a neutral and pleasant final palm oil product.
Plate Type Heat Exchanger Efficiently regulates temperatures during various processing stages, contributing to the overall efficiency of the process.
Crystallizers Aids in crystallizing certain components during refining, enhancing the quality of the final palm oil product. For specific palm oil fractionation, a palm oil Dry Fractionation Plant is often used after this stage.
Membrane Filters Used to further refine and purify the palm oil by separating smaller particles, ensuring a high-quality end product.

Investing in high-quality palm oil processing machines is crucial for long-term time and cost savings. Carefully choose machines for each step, and for effective plant operations, hire competent employees with experience in the palm oil processing industry.

Typical Palm Oil Manufacturing Processes

Embarking on the journey of typical palm oil manufacturing involves intricate steps

The crucial first step treats fruit bunches with steam, eliminating bacteria and arresting enzyme activity. This ensures the cessation of fruit degradation.

The steamer softens oil palm fruits, facilitating the release of natural oil. Post-steam treatment, the fruit masses, containing water, oil, fibers, and palm kernel, undergo a meticulous separation process.

Under high pressure, the natural fruit yields a water-oil mixture. Over time, the distinct layer of palm oil forms, allowing extraction from the water. These initial drops result in natural crude palm oil, necessitating further processing at the edible oil refinery.

Utilizing Bunches and Kernel

Remaining empty fruit bunches fuel steam boilers .

These empty bunches are composted, enriching soil fertility with nutrients for oil palm plantations.

The kernel is transported to a seed crushing plant , which crushes the hard kernel to extract the oil oil using palm kernel oil press machines.

Refining Palm Oil

In an edible oil refinery , crude oil undergoes a meticulous water wash to ensure intensive contact for the removal of water-soluble compounds. This process results in an oil-water mixture from which the lighter, refined edible oil distinctly separates and forms a top layer, ready for further purification and processing.

The oil undergoes a crucial bleaching step, employing natural earth to bind and remove impurities.

Volatile components are removed through steam, transforming into gas that exits the oil. The result is a refined and healthy vegetable oil.

Final Manufacturing

Post-refining, the oil undergoes fractionation, separating into distinct fractions based on specific properties, particularly melting points. A dry fractionation plant , also known as a palm oil fractionation plant, further refines palm oil by separating it into two distinct fractions:

  • Palm olein oil and
  • Palm stearin oil

This precision allows for the creation of palm oil fractions tailored to diverse applications

Each fraction finds application in a variety of products, from margarine and cookies to creams. Palm oil, post-fractionation, becomes a versatile ingredient in an array of manufacturing processes.

Challenges and Solutions in Palm Oil Production Business

Starting a business in palm oil manufacturing brings both challenges and opportunities. Here's a breakdown of key challenges and practical solutions to navigate this dynamic industry

Challenges Solutions
Financial Difficulty Explore alternative financial sources due to the capital-intensive nature of the palm oil processing industry.
Labour and Management Intensity Be prepared for the labor and management demands by ensuring a skilled and well-trained workforce.
Location Selection Overcome the challenge of finding a perfect location by conducting thorough research and considering factors like accessibility, infrastructure, and cost-effectiveness.
Transport and Power Issues Address transportation and power supply challenges by setting up your own generators and establishing efficient transportation systems.
Raw Material Supply Mitigate raw material supply issues during scarcity seasons by establishing your own palm tree farm to ensure a consistent and reliable source of raw materials.
Transportation of Palm Bunches and Oil Plan for efficient transportation solutions, both from the farm to the plant and from the plant to the market, to streamline the logistics process and reduce potential delays.

Cost of Palm Oil Production Business

Embarking on the journey of setting up a palm oil production business demands a grasp of the costs involved.

Scale Cost Range
Small Scale (10-50 TPD) $20,000 - $260,000
Medium Scale (100-500 TPD) $1.4M - $ 6.5M
Large Scale (1000-2000 TPD) $7.5M - $15M

Licenses And Certification For Palm Oil Mill Business

In the context of a sustainable palm oil production line, various certifications ensure adherence to ethical and environmentally friendly practices. Here are some prominent certifications and licenses associated with sustainable palm oil

License/Certification Description
Business License Obtained from local authorities, permitting the legal operation of the palm oil mill business.
Land Use Permit Required to use a specific area for the palm oil mill and cultivation of oil palm plantations.
Palm Oil Mill License A specific license for palm oil mill operations, ensuring compliance with industry regulations.
Roundtable on Sustainable Palm Oil (RSPO)

One of the most widely recognized standards for sustainable palm oil.

International Sustainability and Carbon Certification (ISCC)

A global certification system covering various sectors, including palm oil.

Rainforest Alliance Certification Focuses on promoting environmental sustainability and social responsibility in agriculture, including palm oil.
Fair Trade Certification Ensures fair wages, ethical labor practices, and community development in palm oil production.
UTZ Certification Emphasizes responsible and sustainable farming practices, covering aspects such as environmental protection and social welfare.
Palm Oil Innovation Group (POIG) Not a certification but a collective commitment by companies to adhere to higher sustainability standards in palm oil production.

It's essential for businesses in the palm oil industry to obtain relevant certifications to demonstrate their commitment to sustainable practices. These certifications not only enhance credibility but also contribute to a positive environmental and social impact.

Seizing Success : Path to Effective Palm Oil Production Business

Starting a palm oil production business is a promising opportunity with the potential for significant profits. With the continuous growth in Africa's population, the demand for palm oil is increasing, making it an opportune time to enter this industry.

The relatively low initial investment makes it accessible for a wide range of entrepreneurs. By getting involved in this thriving business, individuals can not only meet the rising demand for palm oil but also position themselves for substantial financial gains.

We are committed to excellence in the field, and stand ready to support you at every step. With a track record of providing top-notch palm oil processing equipment, tailored solutions, and impeccable services, we ensure your venture is set up for success.

Choose Nandt Engitech as your trusted partner, and let's cultivate success together in the flourishing palm oil industry.

author-profile

Riyaz Tunvar

Riyaz Tunvar, Sales and Marketing Director at N&T Engitech Pvt. Ltd., excels in transforming the edible oil sector. With deep expertise in oilseeds, oils, and fats technologies, he leads strategic initiatives, driving growth and innovation in cutting-edge edible oil plant and machinery solutions.

Build Something People Want

Let's talk about your engineering needs to find the best solutions.

Related Post

featured

Top 10 Largest Edible Oil Refineries in the World

featured

Top reasons behind soybean oil's popularity as edible oil

featured

Why You Should Choose a Turnkey Contractor for Your Edible Oil plants

Submit your business inquiry.

Are you interested in learning more about our technologies? Feel free to contact us right away to discuss your project.

palm kernel oil business plan

Strategies For Palm Oil Production Business Success

Welcome to our Palm Oil Production Business column. Here, we will provide you with a complete guide to starting your own palm oil business, covering all aspects from palm oil industry market overview to investment return, as well as palm oil mill business plan, palm oil production factory and process design, and palm oil processing equipment selection. 

Want to know more about the palm oil production industry? Check out our related articles for more information now!

  • How to Make Palm Oil Production Process Design for Starting Business?
  • Start Palm Oil Processing Machine Selection for Business Plan
  • Business Plan Guideline: Palm Oil Mill Plant Factory Layout Design
  • How to Make Project Cost Budget for Palm Oil Processing Business Setup?
  • Optimize Your Palm Oil Mill Design for Maximum Productivity
  • How to Start Business in Top Palm Oil Producing Countries?
  • Techno-economic Analysis for Palm Oil Production Benefits in Business Setup
  • What Is the Market Forecast of Palm Oil Extraction Industry?
  • How to Start Palm Oil Business with High Profitability?

The Booming Palm Oil Production Market Palm oil is a crucial ingredient in many of the products we use daily, from food to cosmetics. The palm oil industry has a bright future, with a projected compound annual growth rate of 5.3% from 2021 to 2026. Investing in a palm oil production business can yield high returns, with an average profit margin of 30%. As the demand for palm oil continues to increase, starting your own palm oil milling business is a lucrative opportunity to tap into this growing market.

Essential Factors Before Palm Oil Business Starting: Making Informed Investments

Investing in a palm oil production business can be a lucrative opportunity, given the global demand for palm oil as a versatile commodity. However, it's important to consider several key factors before making an investment decision. 

By carefully considering these key factors, you can make informed decisions and increase your chances of success when investing in your palm oil mill business.

  • Market analysis:  In-depth study of the supply and demand dynamics of palm oil in the target market. Understand factors such as consumption patterns, market trends and potential risks.
  • Factory site selection:  Consider factors suc​h as proximity to palm plantations, infrastructure, labor availability and market access.
  • Business plan and strategy:  The palm oil business plan should cover areas such as land acquisition, palm oil press machine, palm oil production plant capacity, supply chain management and marketing strategy.
  • Licensing and regulations:  Ensure compliance with environmental regulations, health and safety standards and land use regulations.
  • Technology and equipment:  Invest in modern and efficient palm oil milling equipment to maximize productivity and minimize waste. 
  • Financial Management: Analyze the financi​al aspects of the business, including initial investment costs, operating expenses, revenue streams, profitability and cash flow.

how to start your own production line with best business plan

ABC Machinery- Your One-Stop Engineering and Construction Partner

At ABC Machinery , we specialize in providing one-stop engineering and construction services for palm oil production businesses. With over 20 years of experience, we offer customized solutions tailored to your specific needs, from feasibility studies to equipment installation and maintenance.

With ABC Machinery as your partner, you can benefit from our extensive experience, expertise, and high-quality palm oil processing equipment and services to ensure the success of your palm oil mill business. If you are interested in setting up a palm oil processing plant, please do not hesitate to contact us for professional advice and technical support!

palm oil pressing machinery manufacturer

  • - Small Palm Oil Press
  • - 1-10 ton/day Mini Palm Oil Mill
  • - 1-20 ton/day Small Palm Oil Mill
  • - Small Palm Oil Refining Machine
  • - fruit reception system
  • - sterilizing system
  • - threshing system
  • - digesting system
  • - pressing system
  • - crude palm oil clarification system
  • - bulk oil storage system
  • - palm kernel recovery plant
  • - screw oil pressing plant
  • - solvent extraction plant
  • - Degumming Process
  • - Deacidification Process
  • - Bleaching Process
  • - Deodorization Process

mini and small scale palm oil processing plant cost

Business Plan

Palm Kernel Oil Production Business Plan in Nigeria

by BusinessPlan Leave a Comment

Palm kernel oil production is a very lucrative business. This is because the oil from this process can be used for several purposes. From cooking to making cosmetics, the uses are numerous.

You can start this business in Nigeria and enjoy a lot of profits. If you have been looking for a way to start, look no further. We have a total package for you in this post.

Also Read: Palm Oil Business Plan in Nigeria

You will not just learn how to start this business, you will see how profitable it is. Let’s look at a sample business plan first before stepping further.

Sample Business Plan for Palm Kernel Oil Production

You are probably wondering why there is a need for a business plan for palm kernel oil production. Every business needs a business plan. A business plan has several uses including raising capital from grants and loans and running your business.

This business plan is a sample so it is abridged. You can reach out to us to get the full plan at an affordable price. Now to the business plan.

Business Name: Jules Oil

Location: Cross-Rivers State

Industry: Agro-Allied Manufacture

Jules Oil is located in Cross-Rivers State, Nigeria. This location is known for its abundance of palm kernel, the main raw material for our processes. We intend to cater to both domestic and commercial needs of our clients.

Clients have different requirements. This is why we will focus our efforts on both crude and refined oil after extraction is complete. Asides extracting and refining the oil, we will also sell the by-products. Finally, we intend to offer consultancy services and training programs for young individuals.

To provide the best services to our clients, it is important to invest in research and development. This will give us a clear picture of the current expectations in the industry and the latest trends. It will also give us a heads up regarding the direction of the industry and new milestones.

Having efficient machines and the right hands to man them is very important in this line of business. We will invest in extraction, crushing, and refining machines to make our production process top-notch. In line with this, we will ensure that our production facility will maintain the required hygiene.

Packaging is a very important aspect of this process. This is why we will invest in the best packaging methods attainable in the country. We believe that this will set us apart from the competition and will be a major force of attraction for our business. There are so many opportunities in this business. To this end, we know that if we channel our efforts in the right direction, we can become a force to reckon with.

Some of our customers include makers of butter, margarine, mayonnaise, waxes, polish, and soaps. Others include dairy companies, pharmaceutical companies, and makers of ice cream, cheese, and filled milk. The oil extracted from palm kernel is also useful in the production of lubricants and tin plating.

Jules Oil will source its palm kernel from trusted vendors. This is necessary because it is the key to producing oil of high-quality.

Business vision

To become an A-list palm kernel oil production company within and outside Nigeria.

Business mission

To build a palm kernel oil production empire that will be recognized globally. We intend to achieve this by using the best practices in the industry and investing in research and development.

Business objectives

Business objectives are very important for achieving the vision and mission of any business. After much research, we have come up with the following objectives:

  • To ensure that our sales increase to above N30 million in the first two years of operation.
  • To ensure that our business maintains a profit margin of between 20% and 25% yearly. We will need to pay close attention to the cost of production and our production methods to achieve this.
  • Drive publicity through a highly motivated team.

Keys to success

If we are going to achieve all that we are set out to do, we need a clear cut plan. We believe that these keys to success will drive us to achieve our goals.

  • Consistent production at the highest possible quality.
  • Investment in research and development to constantly improve our production methods and processes.
  • Investment in quality machines and skilled staff.
  • Ensuring that the production environment is hygienic and healthy.
  • Acquisition of the necessary licenses.
  • Setting up a highly motivated sales team that will drive sales volume by at least 20% yearly.

Our products and services

Jules Oil will focus on the extraction of oil from palm kernel nuts. We intend to service both the commercial and domestic needs of our clients. To this end, we will provide the following products and services.

  • Refined Palm Kernel Oil
  • Crude Palm Kernel Oil
  • Palm Kernel Cake
  • Palm Kernel Sludge
  • Crushed Palm Kernel Shell for bio-fuel
  • Consultancy and training services

Competitor analysis

Currently, there are several big companies in this sector. This means that we have to fight hard to stay afloat. After a careful study of the market, we have discovered reasons why we can take over the market. They include:

  • Production of high-quality products.
  • Competent and skilled hands to man our equipment.
  • Competitive prices on all products and services.
  • Quality unique packaging that will set us apart from the competition.
  • The use of social media and SEO in our online marketing.

You can reach out to us for the remaining part of this business plan. We will make it available at a very affordable price. Now let’s learn about starting this business.

Get your Palm Kernel Oil Production Business Plan in Nigeria and feasibility study. pay N10,000 to:

Bank Name: Guaranty Trust Bank (GTB)

Account Name:  Chibuzor Tochi Onyemenam

Account Number: 0044056891

After payment, send your name, email address and “Palm Kernel Oil Production Business Plan in Nigeria pdf” to  07033378184

Starting a successful palm kernel oil extraction business in Nigeria

Without a doubt, there is a very high demand for palm kernel oil within and outside Nigeria. What this implies is that whoever is willing and able to invest in this business will take the spoils. In this section, we will show you how to start this business and make it successful.

Feasibility study and business plan

Just like for most businesses, this is the first thing you must do. Some individuals carry out a feasibility study unknowingly so they don’t write anything down. We encourage you to be deliberate about your feasibility study as it holds the key to success.

From your feasibility study, you get information that helps you to develop a detailed business plan. This will be the key to running your business and also raising funds for your business. you don’t have to go through the stress of carrying out any of this. We can do both for you at an affordable price.

Raise capital

This business cannot run without sufficient capital. The reason for this is that you need funds to purchase the raw materials as well as the production equipment. From your feasibility study, you will have an estimate of what you need for this business.

You can raise money for the business in several ways. Some of these include personal savings, gifts, loans, and grants. A business plan is very important if you will be using the last two methods of raising capital for your business.

Find a perfect location

The truth is that there is no perfect location. However, you can find a location that is close to perfect. This location is one that is close to where you source your raw materials.

It should also be easily accessible to the target market. Make sure that you study the location properly before acquiring it.

Acquire the needed machinery

There are several pieces of equipment you need to run this business successfully. This equipment cost money. But more than this, you must ensure that you get quality equipment from a trusted supplier. If you acquire substandard equipment, then your business will end up suffering a lot.

Find a reliable supplier

There is no need to start your palm kernel farm. The best way to get raw materials is to find a reliable supplier. This is a very important step as subscribing to a bad supplier can ruin your business. Run background checks on a list of suppliers and pick one that will offer great prices for quality kernels.

Hire skilled and competent staff

It is one thing for your staff to be skilled, it is another for them to be competent. You cannot handle the business on your own so you need hands to help you out. Before you hire anyone to conduct a proper interview and check to see that they support your values. Bad staff will give your business a bad image which will ruin the business.

Market your products

This is a challenge for most businesses. You cannot rely on fate to sell your products. It is important to be aggressive in marketing your products. There are several methods of marketing. Find out the best ones for your products and develop an efficient marketing strategy.

Profitability of the palm kernel oil extraction business in Nigeria

Do you know that it is possible to make up to N300,000 each day from this business? One ton of the oil sells at N120,000, one tone of the cake sells at N100,000, and one ton of sludge sells at N100,000.

Ten tons of palm kernel will produce five tons of oil, four tons of cake, and a ton of sludge. On the market, ten tons of palm kernel costs N800,000.

This will yield N600,000 of oil, N400,000 of cake, and N100,000 of oil totaling N1,100,000. When you take out the cost of the cost of the kernel from this you have N300,000 as your profit.

Do you now see how profitable the palm kernel oil extraction business is in Nigeria? Contact us for a detailed business plan at an affordable price.

Get your Palm Kernel Oil Production Business Plan in Nigeria in Nigeria and feasibility study. pay N10,000 to:

Palm Kernel Oil Production Business Plan in Nigeria © www.businessplan.com.ng

Share this:

Leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Notify me of follow-up comments by email.

Notify me of new posts by email.

PALM KERNEL OIL (PKO) EXTRACTION BUSINESS PLAN IN NIGERIA

PALM KERNEL OIL (PKO) EXTRACTION BUSINESS PLAN

INTRODUCTION

Palm kernel oil is vital for the production of many products such as soaps, chocolates, chewing gum, washing powder, lipsticks, margarine, coating, ice cream, noodles and bio-diesel.

It is also widely used for cooking by some people and is not only cheaper than vegetable oils nuts also has a higher saturated fat content which allows it for a better and longer shelf life.

PKO is not just a newly discovered business but has existed for a long time, and is a real money spinner to entrepreneurs who are in it.

The market for this business is not only steady but it is a market that can never be saturated as there are no close substitutes to its use in many of the products that it is widely used for its production.

EXECUTIVE SUMMARY PALM KERNEL OIL(PKO) EXTRACTION BUSINESS PLAN IN NIGERIA

ACA Palm Kernel Oil Company leading palm kernel oil extraction companies in Ekiti State Nigeria.

We cater to mostly domestic, commercial and industrial clients.

We in ACA deal in the extraction of palm kernel oil from crushed palm kernel nuts into a crude or refined state depending on the request of our teeming clients.

We also sell the by- products obtained after extracting and refining the crude oil, while also offering consultancy services to start-ups who want to venture into the palm kernel oil extraction business as well as for research purposes.

We have procured the best crushing, extraction, and refining machines available that makes our extraction machines the best.

We also have processes and structures in place so as to be able to extract our palm kernel oils under the best standards possible.

Our packaging methods will be done with the hygiene of our customers in mind, as there are plans in place to ensure that we become the ACA Palm Kernel Oil Company established and owned by one of the biggest names in entrepreneurship here in Nigeria, Mr. Richard Akinyemi.

Mr. Richard bagged  a B.Sc in Agricultural Economics and a Masters Degree in Business Administration from the prestigious Obafemi Awolowo University Ife.

He has the required experience of over 15 years to run this business along with his well experienced and vast knowledge team that will help him to successfully run the business.

Our business Objectives

  • The aim of establishing this business is to favorably compete with other palm kernel oil extracting companies both in Ekiti state and in Nigeria as a whole.
  • To be able to achieve a revenue of N 125, 000,000 in the next 3 years.
  • To offer the best attainable service and make available wonderful services at reasonable prices.
  • To maintain a positive image and give the satisfaction of our customers the best shot by exceeding their expectations.

OUR VISION STATEMENT

  • To be among the first 3 palm kernel oil producing company in Nigeria and to compete favorable with our international competitors

OUR MISSION STATEMENT

  • To achieve healthy returns in the first year of operation.
  • To have a mid range gross margin throughout the entire operation.
  • To give our customers the satisfaction of buying the best products and providing excellent customer service to earn their retention and referrals.

Our products and services include the following:

  • Palm kernel oil (PKO)
  • Crude palm kernel oil (CPKO)
  • Crushed palm kernel shell for bio-fuel
  • Palm kernel cake for animal feed production
  • Training and consultancy services

SUCCESS FACTORS

  • ACA palm kernel oil company is set to succeed because of the under-listed reasons
  • There is currently no company with mechanized Equipment for palm kernel oil extraction in the region of the country. They use local methods for their oil extraction which makes productivity quite low. In addition, we have surveyed the local population and received extremely positive feedback from the community saying they will frequent our business before we launch.
  • The business owner and the management team has a track record of success in the palm kernel oil business.
  • Low operating cost and efficient processing technique
  • We have efficient and highly motivated distributors on board.
  • Our working environment is safe and conducive for both our clients and also our employees.

BENEFITS OF OUR PRODUCTS

We deliver quality and we’ll packed palm kernel oil products

We engage the help of competent hands and large machinery as well

We sell our products at fair and best possible Prices and we offer discounts as well.  

COMPETITIVE EDGE

  • Marketing By Packaging: Our products will be of great quality and our packaging will be top notch. This means that ACA PKO company will pay close attention to the final packaging. Quality products don’t just cut it alone, our packaging will be of equal high standard.We will imbibe international quality of packaging for our export activities.
  • Our second competitive edge is the vast experience of our management team. We have people on board who are highly experienced and understand how to grow a business from the scratch to becoming a national phenomenon. So also the wide varieties of other complimentary services and products that we offer and of course our excellent customer service culture will definitely count as a strong strength for the business.
  • Procurement And Use Of Complete Equipment: For continued and uninterrupted production ACA Palm Kernel Oil (PKO) company uses complete equipment and these equipment  are in the best condition and they can be obtained overseas.

MARKETING ANALYSIS OF OUR PALM KERNEL BUSINESS PLAN IN NIGERIA

We have identified up to 500 clients to supply  Crude Palm Kernel Oil (CPKO)  on weekly basis at market price of N 920 per Kg in a month yielding N 11,040,000 monthly and annual revenue of N 100,480,000.

In Ogun state our Palm Kernel Oil  will be serving 300 customers on weekly basis at N 1,200 per keg and yielding  N 12,120,000 on monthly basis and annually its N 110,440,000.

We will be selling Palm Kernel cake for animal feeds to 112 feed mills on monthly basis at N 10,000 per sack and in a year that’s is N 13,440,000.

For more detailed marketing analysis get our template or customized business plan today.

OUR TARGET MARKET

  • Soap Manufacturers (small, medium and large scale organizations)
  • Confectioneries
  • Cosmetic industries
  • Food industries
  • Animal feed industries
  • Bio-diesel industrial plants

SWOT ANALYSIS OF OUR PALM KERNEL OIL BUSINESS  PLAN IN NIGERIA

  • Very high gross margin
  • Highly experienced owner-operator
  • Large machinery built to withstand numerous demands from Customers
  • Limited business experience of book keeping
  • Competitors offer similar products swiftly
  • Limited startup fund
  • High transportation cost
  • Increase in insurance policy

OPPORTUNITIES

  • Innovative entrepreneurs entering the market from time to time
  • Continued expansion for online sales
  • Development of wholesales/ retail distribution relationships
  • Affiliate relationship with vendors and online marketers
  • Unfavorable government policies
  • Stiff competition from competitors
  • Increase in prices of raw materials

For the full details of our template or customized business plans which contain standard business plan table of contents such as Executive summary, business description, industry overview/trends, products and services,  marketing analysis, sales and marketing strategy, organizational/ management structure, SWOT and PEST analysis, financial plan.

We also organize training, prepare business model canvas,Grants application assistance and feasibility reports: Please call us on: +234 814 716 1686. e-mail: [email protected]

Share this:

Let's keep you updated on latest business tools and opportunities, we will not share your data with any third party.

palm kernel oil business plan

Privacy Overview

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

PALM OIL BUSINESS PLAN

Profile image of Courage ANANI

A BUSINESS PLAN

Related Papers

Michael Osei Asibey , Eric Adabor

The purpose of the study was to examine the potential of palm biomass, taking a case of the Juaben Oil Mills in the Ashanti Region of Ghana, which has over the years generated electricity for its operations from its waste products and other benefits that have accrued to the company and the host community. Primary data collection and intensive desk study approaches were employed albeit qualitatively, to describe the use of palm biomass as supplementary source of electricity generation in Ghana. The study showed that there is enough potential (waste by-products) for electricity generation to supplement current production from hydropower to meet growing demand. However, policy and institutional arrangements do not easily allow generation and extension for communal benefits. The authors therefore recommend a relook at existing policy and institutional arrangements to help promote this alternative source of energy for efficient and sustainable domestic and industrial uses. We also argue that ensuring efficiency in energy generation calls for R&D into its commercial potential and explore more efficient means of managing industrial and other agro biofuel wastes in developing economies. Future energy policy must also create and harness diversity of available biomass resources and reduce the delivery risks of the resources.

palm kernel oil business plan

George Woode

Keeping livestock is known to perform several functions for the poor .Apart from its usefulness in the provision of food to meet dietary requirements it helps meet both planned and emergency expenditures. However the huge potential that livestock has for poverty reduction has remained largely underutilized. Studies that assess ways to maximize economic benefits from livestock keeping are limited. This study analyzed the goat value chain to generate policy-relevant knowledge that will aid efforts to increase the income from smallholder goat production. The study specifically identified and mapped major value chains for goats in Ghana, analyzed the structure and dynamics of these value chains as well as identified the opportunities and the constraints that arose in the value chains. Data was taken from a total sample size of 168 value chain actors through focus group discussions, in-depth interviews and household surveys. Qualitative data derived from the in-depth interviews and focus group discussions was used to identify institutional arrangements, opportunities and constraints. Cross-tabulations were computed with their chi-square test conducted to test differences between observed and expected responses. Student’s t-test was run to compare quantitative data for study sites to identify significant difference. Quantitative data on costs and benefits was used to calculate gross profit margins for value chain actors, to trace the distribution of marketing margins. Data on price received per goat for each of the identified actors, was used to compute the share of value at each stage of the value chain to evaluate opportunities for intervention. Analysis of the value chain showed that curbing farmers rising expenditure on water and supplementary feeds will reduce cost of production substantially however the input of family labor reduces the gross margins of the smallholder by at least 10%. There are also social and ethnic barriers to participating in markets. The study recommended the sinking of boreholes, intensification of tree planning and the identification of communal pasture areas. The veterinary services are also expected to intensify the transfer of technology on controlled breeding and feeding practices and facilitate its adoption. The agriculture extension officers should be trained to assist farmers interpret current and historical price information and use it in their decision making and assist farmers do simple profit and loss accounting as an innovation. The study recommends standardizing the marketing of goats through the use of weighing system and the institution of direct sales as a marketing option.

Annani-Samuel Yakah

Prepared for the JICA Study Team as Part of the Comprehensive Urban Development Plan for Greater Kumasi Project

Ransford Acheampong

This report presents a situational analysis on housing for the Greater Kumasi Sub-Region (GKSR)—a newly designated functional region under Ghana’s new spatial planning system for the purposes of strategic spatial planning and sustainable growth management. The report was prepared to inform the formulation of the first Comprehensive Urban Development Plan for the Sub-region . The report has three main sections. Section one focuses on analysis of the housing situation in the GKSR based on statistical data released by the Ghana Statistical Services on official request by the project study team . Section two provides a description of the physical condition of housing in the Kumasi Metropolis based on seven main identifiable sectors of housing proposed by the author. The final section presents the findings of a short study conducted on the role of private real estate developers in housing supply within the GKSR.

Nnamani Ifeanyi Alexis

lsetting up a business for piggery and employing more than 10 people

Isaac Kwesi Nooni

Remote sensing has been used for the production of land cover maps as it is feasible in terms of cost, time and global coverage and has gained much attention in agricultural studies in recent years. It has become a great potential for extracting land cover information especially when the mapping process is directed to produce classes of interest. This has become necessary as the cultivation of oil palm has raised issues of environmental sustainability. To assess sustainability of oil palm expansion requires spatial and temporal information of land use and land cover. There is insufficient guidance from literature to map and quantify oil palm related land cover changes in a heterogeneous environment using spectral information from satellite image and a need to develop a methodology to map oil palm related land cover changes in a heterogeneous landscape. The study objective seeks to map oil palm related land cover of a section from the northern portion of Ejisu-Juaben district of Ghana using support vector machine (SVM) with Landsat ETM+. The classification was carried out using SVM compared with MLC based on best three band combination from the image. The SVM and MLC performance evaluation was done using overall accuracy assessment and kappa statistics procedure. The classifier with the higher overall accuracy and kappa statistics was further analysed using chi-square statistics test in relation to nature of samples used in the analyses. The results of separability analysis show that ETM+ data provides spectral discrimination of land cover types in the study area. The result show that band 4, band 5 and band 3 provided best spectral separability based on Bhattacharyya distance. The more accuracy classification was SVM approach with 78.29% accuracy. The results reveal that the optimum performance of the SVM method is affected mainly by the proper setting of parameters involved in the algorithm. The RBF parameter setting in SVM was an important variable in the classification process, because it helped control the number of support vector used in the classification. The results indicate that SVM can improve the classification of oil palm mapping. The SVM and MLC varied in their ability to map and quantify oil palm. SVM is more accurate and a suitable method for identifying and mapping oil palm.

Eric Oduro-Ofori

Carel Dieperink

Biofuels - At What Cost? Government support for biodiesel in Malaysia

This report provides a detailed assessment of government intervention in the biodiesel market in Malaysia. It also analyses the role of government support for biofuels—both in Malaysia and internationally—on social and environmental outcomes in Malaysia. The Global Subsidies Initiative examines government subsidies and the ways in which they can undermine efforts to put the world on a path toward sustainable development.

Benedicta O Asante

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

RELATED PAPERS

John K M Kuwornu

Mark Hayford Dwira

Fernando Santiago

K. Jothi Sivagnanam and K. Murugan- Agro-Economic Research Centre, University of Madras, Chennai, Tamil Nadu

Adam Salifu

Iris van Duren , Alfred Duker

Hariati Sinaga

Obielum Oliseh

Stefano Marras

Andy Mulyana

Decent Work Deficits in Southern Agriculture: Measurements, Drivers and Strategies

Diana Pastrana Cervantes , María del Rocío Ruenes Morales

Anthony Ayakwah

valerie nelson

michael plurst

Lim GHEE THEAN

Ross Kingwell

Jennifer Clapp

Edward Antwi

Saeed Qadir

Abdul Aziz Issah

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Are you interested in the agro-allied or food processing sector?

Do you need a standard palm oil processing business plan?

Then here’s an in-depth guide on how to start a palm oil processing company here in Nigeria.

Though among very lucrative businesses in Nigeria, the palm oil business is commonly overlooked. Palm oil is the most consumed edible oil worldwide, as it is a popular food ingredient in Africa and some parts of Asia (such as Malaysia and Indonesia).

Palm oil is in greatest demand in West Africa, where it is used in almost every home for cooking and a few other purposes. But in spite of this, the region produces less than 5% of the palm oil produced worldwide. Malaysia and Indonesia are the world’s largest producers and exporters of the commodity, and West Africa is one of their biggest export markets because countries in the region are not producing enough palm oil to meet the demands of their local markets.

Presently, the global palm oil market is worth hundreds of millions of dollars, and it only keeps growing. You can make a lot of money by tapping into this lucrative market. There are many opportunities in palm oil production for interested entrepreneurs.

There are many ways to make money from palm oil, depending on how much capital you have. If you have little capital, you can buy and sell palm oil in bulk quantities. But if you have huge capital, you can start a palm oil processing company or a palm kernel extraction plant, which is by far the most lucrative palm oil business. If you are interested in setting up a palm oil processing company, the following are the steps you need to take.

OUR STANDARD PALM OIL BUSINESS PLAN is a comprehensive business plan that will assist you with all the needed ideas and plans to start a successful PALM OIL business. It will also give you all the needed guides to start an ultra-modern palm oil processing company.

PROCESSING business anywhere in the world is a viable business and can be done on a large scale or small scale.

Starting PALM OIL PROCESSING business in Nigeria is usually for two major investment purposes; To produce processed palm oil for the local market and export purposes and to produce kernel for marketing purposes to other companies who will later process it into palm kernel oil.

The PALM OIL business plan is fully updated with current research on how to start a PALM OIL business, get the attention of the market, retain them, and make huge profits.

The business plan has a full analysis of PALM OIL business in Nigeria, PALM OIL large composite machines and equipment (MILL), and PALM OIL design and installation, the cost of PALM OIL, PALM OIL dealers. The PALM OIL business plan also has an in-depth analysis of oil palm processing equipment.

3 Years of Automated Financial Model in MS Excel with complete industry research.

To get this standard PALM OIL business plan only for N10, 000

Let me give you an idea of what you should expect from the business plan:

1)      Table of Contents

2)      Executive Summary: The summary includes an introduction, products and services description, marketing and sales among others

3)      Company Overview : this includes

  • Mission Statement
  • History and Current Status
  • Markets and Products
  • Keys to success
  • Cost summary

4)      Product description : All our products are described including other unique features.

5)      Industry and Market Analysis

  • Introduction
  • Industry analysis
  • Market analysis
  • Customer analysis
  • Competitor analysis
  • SWOT Analysis

6)      Marketing Strategy

  • Target Market Strategy
  • Product/Service Strategy
  • Pricing Strategy
  • Distribution Strategy
  • Advertising and Promotion Strategy
  • Sales Strategy
  • Marketing and sales Forecasts

7)      Operations

  • Operations Strategy
  • Scope of Operations
  • Operating Expenses

8)      Development

  • Development Strategy
  • Development Timeline
  • Development Expenses

9)      Management

  • Company Organization
  • Management Team
  • Administrative Expenses

10)   Summary of Financials

  • Financial Assumptions
  • Financial Forecasts
  • Projected Cash Flow
  • Income statement

iii.      Balance sheet

  • Profit and loss
  • Profit Margin, chart etc
  • Financial Risks

11)   Appendices

Support for Product/Service Description (e.g., diagrams, pictures, etc.)

Support for Marketing and Sales Plan

Support for Development Plan

Support for Operations Plan

Resumes of Management Team

Financial Statements

  • Income Statement [3 years]
  • Balance Sheets [3 years]
  • Cash Flow Statements [3 years]
  • Ratio Analysis [3 years]
  • Other supporting financial statements

What is the cost of the Palm Oil Business Plan?

Well if I say N30,000 it worth it but I won’t give you for that amount and not even N20,000.

What about N15,000 ? I won’t still give you for that amount. But for LIMITED TIME I will give you for N10,000

To access this standard palm oil business plan, pay N10,000 into any of the accounts below:

You can order for the palm oil processing business plan from our store here https://utibeetim.com/product/palm-oil-processing-business-plan-with-3-years-financial-projections/

You can pay into any of the following accounts:

Account Name: Etimate Global Services Account Number: 1150007557 Bank: Skye Bank or

Account Name: Utibe Etim Account Number: 0007852498 Bank: GTB or Account Name: Utibe Etim Account Number: 2012483183 Bank: UBA

AFTER PAYMENT: Please text or email your name, phone number, payment details and your email address to 07031542324 or [email protected] and your palm oil business plan will be sent to you

OTHER STANDARD BUSINESS PLAN

  • Standard Poultry Business Plan with 3 Years Financial Analysis
  • Standard Catfish Business Plan With 3 years financial analysis
  • Standard Palm Oil Business Plan with 3 years financial analysis
  • Standard Pig Business Plan with 3 years financial analysis
  • Standard Cassava Processing Business Plan with 3 years financial analysis
  • Standard Snailery Business Plan with 3 years financial analysis
  • Standard Pure Water Business Plan with 3 years financial analysis
  • Standard Fashion Business Plan with 3 years financial analysis
  • Standard Web Design/Software/Training Business Plan with 3 years financial analysis
  • Standard Zobo Business Plan with 3 years financial analysis

CHECK FULL LIST OF ALL THE BUSINESS PLANS WE HAVE HERE

WHAT CUSTOMERS ARE SAYING

firefox 29/12/2015 , 04:52:47 PM https://mail.google.com/mail/u/2/#inbox/151ee3b5bd5c053b Poultry Business Plan - utibeman@gmail.com - Gmail - Mozilla Firefox

I want to say a big thank you for the business plan you sent. The plan is rich and detailed and professionally developed as explained on your web page. In fact the plan worth more than price. I have gone through the financial template and I have made some changes to suit my needs and would present it to my banker next. Am I going to present it together with the financial template or should I only present the business plan?

I have gone through the financial template and I have made some changes to suit my needs and would present it to my banker next. Am I going to present it together with the financial template or should I only present the business plan?

Can I also send it for you to help me review the financial before I submit?

Mrs. Esther Enudi

If you have any question, don’t hesitate to call me on 07031542324

Utibe Etim

07031542324

utibeman(@)gmail.com

Thank you for reading this post, don't forget to subscribe!

Share this:

palm kernel oil business plan

ProfitableVenture

Oil Palm Plantation Business Plan [Sample Template]

By: Author Tony Martins Ajaero

Home » Business Plans » Agriculture Sector

Are you about starting an oil palm plantation? If YES, here’s a complete sample oil palm plantation business plan template & feasibility report you can use for FREE to get started .

Okay, so we have considered all the requirements for starting an oil palm plantation business. We have analyzed and drafted a sample oil palm plantation marketing plan backed up by actionable guerrilla marketing ideas for oil palm plantations. So let’s proceed to the business planning section.

Starting a business in the agribusiness industry is one sure way of making good returns on your investments especially if you live in Nigeria . This is so because players in the agriculture industry are enjoying good support from the federal government of Nigeria and this is also applicable to other countries of the world.

Suggested for You

  • Marijuana Cultivation Business Plan [Sample Template]
  • CBD Hemp Farming Business Plan [Sample Template]
  • Lavender Farm Business Plan [Sample Template]
  • Soybean Farming Business Plan [Sample Template]
  • Rose Farming Business Plan [Sample Template]

One of the highly thriving and profitable agribusinesses that an aspiring entrepreneur can successfully start is to go into oil palm plantation business.

In as much as people can start this business on a local level and on a small scale, but it will be a wise decision to write a good business plan document especially if you choose to start the business on a large scale and as a standard business that can employ more than a handful of people.

The truth is that business plans are like maps that help businesses to chart a good and profitable course for themselves. These plans have to be thoroughly adhered to in order to make headway in the industry. Below is a sample oil palm plantation business plan template that will help you to successfully launch your own business.

A Sample Oil Palm Plantation Business Plan Template

1. industry overview.

The oil palm processing industry is an industry that thrives in the African continent and in some parts of Asia. Nigeria is one of the countries in Africa that have loads of players in this industry. Although locals in rural communities run this type of business on a small scale, there are medium to large scale investors who also operate standard oil palm plantation and palm oil processing businesses.

These are the organizations that own their own palm tree plantations and also engage in the exportation of palm oil to countries across the world. In most cases, they ensure that they target countries with robust African communities.

Palm kernel is gotten from palm trees and it is the palm kernel that is processed into palm oil. Palm oil is considered to be one of the healthy and vitamin packaged oils that is highly suitable for cooking. In Nigeria, palm oil is used for several delicacies and even for frying.

As a matter of fact, there are no tribes in Nigeria and even in the West African coast that don’t make use of palm oil or red oil as it is popularly called in most quarters. Palm oil is also used in making soap and body creams.

The oil palm plantation line of business is indeed thriving and pretty much active in Africa, Asia and South America (places with god numbers of African communities) and it generates several millions of US dollars annually. This line of business is responsible for the employment loads of people directly and indirectly all around the world.

Any aspiring entrepreneur that is considering starting a oil palm plantation business whether on a small or large scale should ensure that he or she conducts thorough market survey and feasibility studies so as to get it right. The truth is that this type of business does pretty well when it is strategically positioned.

It is important to secure a farmland in a location with soil composition that is highly suitable for the cultivation of palm trees if indeed you want to achieve bumper harvest and maximize profits in this line of business.

In a nutshell, oil palm plantation is a profitable business venture and it is open for any aspiring entrepreneur to come in and establish his or her business; you can choose to start on a small scale cultivating palm trees on few hectares of land or you can chose to start on a large scale with massive land mass for your oil palm plantation and even running a palm oil processing plant and with robust palm oil and palm kernel distribution networks all across Nigeria, Africa and the global market.

2. Executive Summary

Benson Edosa & Sons Oil Palm Company is a standard oil palm plantation business that will be based in Benin – Edo State, Nigeria.

We are registered under the Nigerian Corporate Affairs Commission (CAC). Although we intend starting out on a small scale by cultivating oil palm on 20 hectares of land, but that will not in any way stop us from maximizing our potential in the oil palm plantation line of business.

We hope to grow the business from cultivating oil palm in 20 hectares of land to 100 hectares of land and also owning our palm oil processing plant and exporting palm oil to other countries in Africa and the world at large.

The overall business goal of Benson Edosa & Sons Oil Palm Company is to become the number one oil palm plantation and palm oil processing plant in Nigeria and other countries of the world where we intend exporting our palm kernel and palm oil.

As a business, we are willing to go the extra mile to invest in effective oil palm cultivation tools and equipment and also to hire efficient and dedicated employees. We have been able to secure permits from all relevant departments both at local and state level in Edo state.

Benson Edosa & Sons Oil Palm Company is set to redefine how oil palm plantation business should be run, not just in Benin City – Edo State, but also in the whole of the Nigeria. It is for these reasons that we have put plans in place for continuous training of all our staff.

The demand for palm kernel, palm oil and other products from the palm tree is not going to plummet any time soon because there will always be people who can’t cook without palm oil and cottage companies who need palm oil as their raw material et al, which is why we have put plans in place to continue to explore all available market around the communities where we intend marketing our produce.

In the nearest future, we will ensure that we create a wide range of distribution channels all across Nigeria, the West African Coats and the World at large.

Benson Edosa & Sons Oil Palm Company will at all times demonstrate her commitment to sustainability, both individually and as a business, by actively participating in our communities and integrating sustainable business practices wherever possible.

We will ensure that we hold ourselves accountable to the highest standards by meeting our customers’ needs precisely and completely.

Benson Edosa & Sons Oil Palm Company is a family business that will be owned by Chief Benson Edosa and his immediate family members. Chief Benson Edosa is a farmer par excellence. He has a degree in Agriculture Science from the University of Benin.

3. Our Products and Services

Benson Edosa & Sons Oil Palm Company is a world class commercial farm that is committed to cultivating organic and non – organic oil palm trees for both the Nigeria’s market and the global market. We are in business to produce both food and raw materials for people and industries in commercial quantities.

We are in this line of business to make profits, and we will ensure that we do all that is allowed by the law of Nigeria to achieve our business goals and objectives. These are the areas we will concentrate on in our oil palm plantation and if need arises we will definitely cultivate related crops;

  • Cultivation of variety of oil palm trees (organic and non – organic)
  • Production of palm oil

4. Our Mission and Vision Statement

  • Our vision is to own the largest private palm tree plantation in the whole of Africa and to engage in wholesale distribution of palm oil and related products all across Nigeria and to export palm oil to other countries of the world.
  • Our mission is to establish a world class oil palm plantation and palm oil processing business that in our own capacity will favorably compete with leaders in the industry. We want to build a business that will be listed amongst the top performing businesses in the Nigeria Stock Exchange.

Our Business Structure

As part of our plan to build a top flight oil palm plantation business in Benin City – Edo State, we have perfected plans to get it right from the onset which is why we are going the extra mile to ensure that we have competent employees to occupy all the available positions in our company.

We will ensure that we only hire people that are qualified, honest, hardworking, customer centric and are ready to work to help us build a prosperous business that will benefit all the stakeholders. As a matter of fact, profit-sharing arrangement will be made available to all our senior management staff and it will be based on their performance for a period of five years or more depending how fast we meet our set target.

The picture of the kind of oil palm plantation business we intend building and the goals we want to achieve is what informed the amount we are ready to pay for the best hands available in the crop cultivation industry as long as they are willing to work with us to achieve our business goals and objectives.

In view of that, we have decided to hire qualified and competent hands to occupy the following positions at Benson Edosa & Sons Oil Palm Company;

  • Chief Executive Officer (Owner)

General Farm Manager

Human Resources and Admin Manager

  • Sales and Marketing Officer
  • Accountants / Cashiers
  • Field Workers

5. Job Roles and Responsibilities

Chief Executive Officer – CEO (Owner):

  • Increases management’s effectiveness by recruiting, selecting, orienting, training, coaching, counseling, and disciplining managers; communicating values, strategies, and objectives; assigning accountabilities; planning, monitoring, and appraising job results; developing incentives; developing a climate for offering information and opinions.
  • Creates, communicates, and implements the organization’s vision, mission, and overall direction – i.e. leading the development and implementation of the overall organization’s strategy.
  • Responsible for fixing prices and signing business deals
  • Responsible for providing direction for the business
  • Responsible for signing checks and documents on behalf of the company
  • Evaluates the success of the organization
  • Responsible for the planning, managing and coordinating all farm activities across the various sections on behalf of the organization
  • Ensures compliance during farming project executions
  • Provides advice on the management of farming activities across all sections
  • Responsible for carrying out risk assessment on the plantation
  • Represents the organization’s interest at various stakeholders’ meetings
  • Ensures that farming goals are achieved, the most efficient resources (manpower, equipment, tools and chemicals et al) are utilized and different interests involved are satisfied.
  • Oversees the smooth running of the daily farming activities across the various farming sections.
  • Responsible for overseeing the smooth running of HR and administrative tasks for the organization
  • Defines job positions for recruitment and managing interviewing process
  • Carries out induction for new team members
  • Responsible for training, evaluation and assessment of employees
  • Oversees the smooth running of the daily business activities.

Sales and Marketing Manager

  • Manages external research and coordinate all the internal sources of information to retain the organizations’ best customers and attract new ones
  • Models demographic information and analyze the volumes of transactional data generated by customer purchases
  • Identifies, prioritize, and reach out to new partners, and business opportunities et al
  • Responsible for supervising implementation, advocate for the customer’s needs, and communicate with customers
  • Develops, executes and evaluates new plans for expanding increase sales
  • Documents all customer contact and information
  • Helps to increase sales and growth for the company

Palm Oil Processing Plant Casual Workers

  • Responsible for operating palm oil processing equipment
  • Responsible for measuring and filling palm oil into various containers as demanded by clients
  • Responsible for carrying out all casual or unskilled jobs in the palm oil processing plant
  • Assists in loading and unloading of palm kernels and processed palm oil
  • Handles any other duty as assigned by the palm oil processing plant manager

Accountant/Cashier

  • Responsible for preparing financial reports, budgets, and financial statements for the organization
  • Provides managements with financial analyses, development budgets, and accounting reports; analyzes financial feasibility for the most complex proposed projects; conducts market research to forecast trends and business conditions.
  • Responsible for financial forecasting and risks analysis.
  • Performs cash management, general ledger accounting, and financial reporting
  • Responsible for developing and managing financial systems and policies
  • Responsible for administering payrolls
  • Ensures compliance with taxation legislation
  • Handles all financial transactions for the organization
  • Serves as internal auditor for the organization

Field Workers/Contract Staff

  • Responsible for preparing farm lands for oil palm cultivation
  • Responsible for watering the palm trees
  • Applies weed or pest control chemicals
  • Handles farm implements and machines as instructed by the section manager/supervisor
  • Assists in handling the harvest of palm kernels
  • Carries out task in line with the stated job description
  • Assists in transporting work tools and equipment to the farm and back to the designated store room
  • Handles any other duties as assigned by the line manager

6. SWOT Analysis

Because of our drive for excellence, we were able to engage some of the finest business consultants in Edo State – Nigeria to look through our business concept and together we were able to critically examine the prospect of the business and to access ourselves to be sure we have what it takes to run a standard oil palm plantation business that can compete favorably in the oil palm plantation line of business.

In view of that, we were able to take stock of our strengths, our weakness, our opportunities and also the threats that we are likely going to be exposed to in Nigeria. Here is a of what we got from the critically conducted SWOT Analysis Benson Edosa & Sons Oil Palm Company;

Our strength lies in the fact that we own are going to be cultivating our oil palm in a very fertile land. We have state of the art palm oil processing facility that has positioned us to meet the demand of palm oil in Nigeria and the world at large even if the demand tripled overnight or if we have a massive order to meet and emergency need.

Another factor that counts to our advantage is the background of our Chief Executive Office; he has a robust experience in the industry and also a pretty good academic qualification to match the experience. We are not ignoring the fact that our team of highly qualified and dedicated workers will also serve as a strength for our organization.

We do not take for granted the fact that we have weaknesses. The fact that we are cultivating oil palm and also setting up a palm oil processing business in a city with other palm oil processing businesses might likely pose a challenge for us in breaking into the already saturated market in Nigeria.

In essence our chosen location might be our weakness. But nevertheless, we have plans to launch out with a big bang. We know with that, we will be able to create a positive impression and we have a proper handle when it comes to building on already gathered momentum.

  • Opportunities:

The opportunities available to us are unlimited. Loads of people make use of palm oil on a daily basis and all what we are going to do to push our palm kernel, palm oil and byproducts to them is already perfected. Benin in Edo state is just ideal for our oil palm plantation business because the land is ideal for farming palm trees, plus there is a large market for palm kernels in Edo State.

The threat that is likely going to confront us is the fact that we are competing with already established oil palm plantations and palm oil processing businesses in Edo State and also there are other entrepreneurs who are likely going to launch similar business within the location of our business.

Another threat that we are likely going to face is unfavorable government policies and economic downturn. Usually economic downturn affects purchasing / spending powers and unfavorable government policies can hinder exporting of palm products to other countries of the world.

7. MARKET ANALYSIS

  • Market Trends

It is a common trend in this business to find oil palm plantations positioning their business in locations and communities where they can have access to arable farmland and cheap labor. If you make the mistake of positioning this type of business in a location where you would have to pay huge amount to secure good farm land, then you would have to struggle to make profits and maintain your overhead and logistics.

So also, another trend in this line of business is that most oil palm plantation businesses also run palm oil processing plant and they look beyond the market within their locations or even Nigeria. They are involved in packaging and exporting palm oil to communities abroad with robust Nigerian or African communities. united states of America, Canada and most countries in Europe are their major targets.

In the bid to stay afloat and continue to make profits from this line of business, most standard oil palm plantation businesses tend to work hard to ensure that they get grants and support from the federal government. With that, it is easier for them to maximize profits and grow the business.

8. Our Target Market

When it comes to retailing palm oil and its byproducts, there is indeed a wide range of available customers. In essence, our target market can’t be restricted to just a group of people, but to all those who make use of palm oil for cooking and also all those who make use of palm kernel and palm oil as raw materials in their cottage industries .

The target market for palm products is wide and far reaching, you can create your own niche yourself to serve a specific purpose. In view of that, we have conducted our market research and we have ideas of what our target market would be expecting from us.

We are in business to engage in retailing and wholesale distribution cum exporting of palm products to the following groups of people;

  • Palm oil processing plants who don’t own their own oil palm plantation
  • Households who make use of palm oil for cooking
  • Restaurants and canteens that make use of palm oil for cooking
  • Nigerian cum African communities in the united states of America, Canada, and Europe
  • Small scale businesses that make use of oil palm byproducts as part of their raw materials.

Our Competitive Advantage

The fact that the government of Nigeria is willing to support entrepreneurs who are into crop cultivation cum oil palm cultivation means that the business is open to all and sundry hence it is expected that there will be high – level competition in the industry. There is hardly any community where palm trees can easily be cultivated that you won’t find several oil palm plantations and oil processing businesses especially on a small scale.

As a standard oil palm plantation business, we know that gaining a competitive edge requires a detailed analysis of the demographics of the surrounding area and the nature of existing competitors. And even if you are successful at first, new competitors could enter your market at any time to steal your regular customers; hence we will not hesitate to adopt successful and workable strategies from our competitors.

We are going to be one of the very few oil palm plantations with a standard palm oil processing plant in State – Edo State that will also engage in wholesale distribution of oil palm byproducts across Nigeria and also export palm oil to other countries of the world.

Another competitive advantage that we have is the vast experience of our management team, we have people on board who understand how to grow a business from scratch to profitability. Our robust distribution network, latest oil palm cultivation and processing tools and of course our excellent customer service culture will definitely count as a strong strength for the business.

Lastly, our employees will be well taken care of, and their welfare package will be among the best within our category in the industry, meaning that they will be more than willing to build the business with us and help deliver our goals and achieve all our aims and objectives.

We will also give good working conditions and commissions to freelance sales agents that we will recruit from time to time.

9. SALES AND MARKETING STRATEGY

  • Sources of Income

Benson Edosa & Sons Oil Palm Company is established with the aim of maximizing profits in the oil palm plantation line of business both in Edo State and Nigeria and of course in some countries of the world. Benson Edosa & Sons Oil Palm Company will generate income by simply selling and exporting;

  • Palm kernel
  • Palm tree byproducts

10. Sales Forecast

One thing is certain when it comes to oil palm plantation business, if your business is centrally positioned and easily accessible, you will always attract customers cum sales and that will sure translate to increase in revenue generation for the business.

We are well positioned to take on the available market in Nigeria and every other countries of the world where we intend exporting our palm byproducts to and we are quite optimistic that we will meet our set target of generating enough profits from the first few years.

We have been able to critically examine the oil palm plantation line of business, we have analyzed our chances in the industry and we have been able to come up with the following sales forecast. The sales projections are based on information gathered on the field and some assumptions that are peculiar to startups in Edo State – Nigeria.

  • First Fiscal Year: N750, 000
  • Second Fiscal Year: N2 Million
  • Third Fiscal Year: N3.5 Million

N.B : This projection is done based on what is obtainable in the industry and with the assumption that there won’t be any major economic meltdown and there won’t be any major competitor offering same product and customer care services as we do within same location. Please note that the above projection might be lower and at the same time it might be higher.

  • Marketing Strategy and Sales Strategy

Before choosing a location to launch Benson Edosa & Sons Oil Palm Company, we conducted a thorough market survey and feasibility studies in order to be able to penetrate the available market in Nigeria and the international market. We have detailed information and data that we were able to utilize to structure our business to attract the number of customers we want to attract per time.

We hired experts who have good understanding of the oil palm plantation line of business to help us develop marketing strategies that will help us achieve our business goal of winning a larger percentage of the available market for our products.

In summary, Benson Edosa & Sons Oil Palm Company will adopt the following sales and marketing approach to sell our produce;

  • Introduce our oil palm plantation business by sending introductory letters to residents, merchants and other stakeholders both in Nigeria and abroad.
  • Advertise our products in community based newspapers, local TV and radio stations
  • List our business and products on yellow pages ads (local directories)
  • Leverage on the internet to promote our product cum business
  • Engage in direct marketing and sales
  • Encourage the use of Word of mouth marketing (referrals)

11. Publicity and Advertising Strategy

Notwithstanding the fact that our oil palm plantation business is a standard one that can favorably compete with other leading oil palm businesses in Nigeria and in any part of the world, we will still go ahead to intensify publicity for all our brand. We are going to explore all available means to promote Benson Edosa & Sons Oil Palm Company.

Benson Edosa & Sons Oil Palm Company has a long term plan of opening our own oil palm plantation across the southern part of Nigeria and export to our product all across the world. This is why we will deliberately build our brand to be well accepted in Benin City – Edo State before venturing out to other cities in Nigeria and the world.

As a matter of fact, our publicity and advertising strategy is not solely for selling our products but to also effectively communicate our brand. Here are the platforms we intend leveraging on to promote and advertise Benson Edosa & Sons Oil Palm Company;

  • Place adverts on both print (community based newspapers and magazines) and electronic media platforms
  • Sponsor relevant community programs
  • Leverage on the internet and social media platforms like Instagram, Facebook, twitter, et al to promote our brand
  • Install our billboards on strategic locations all around major communities in Nigeria
  • Distribute our fliers and handbills in target areas
  • Position our Flexi Banners at strategic positions in the location where we intend getting customers to start patronizing our palm oil.
  • Ensure that all our staff members wear our customized clothes, and all our official cars and distribution trucks are customized and well branded.

12. Our Pricing Strategy

Our pricing system will conform to what is obtainable in the industry but we will ensure that within the first few years, our palm tree byproducts will be sold a little bit below the average prices when compared to other palm oil retailing businesses in Nigeria.

We have put in place business strategies that will help us run on low profits for a period of 6 months; it is a way of encouraging people to buy into our brand.

  • Payment Options

The payment policy adopted by Benson Edosa & Sons Oil Palm Company is all inclusive because we are quite aware that different customers prefer different payment options as it suits them but at the same time, we will ensure that we abide by the financial rules and regulation of the Federal Republic of Nigeria.

Here are the payment options that Benson Edosa & Sons Oil Palm Company will make available to her clients;

  • Payment via bank transfer
  • Payment with cash
  • Payment via online bank transfer
  • Payment via check
  • Payment via bank draft

In view of the above, we have chosen banking platforms that will enable our clients make payment for farm produce purchased without any stress on their part. Our bank account numbers will be made available on our website and promotional materials to clients who may want to deposit cash or make online transfer for the purchase of palm tree byproducts.

13. Startup Expenditure (Budget)

From our market survey and feasibility studies, we have been able to come up with a detailed budget for achieving our aim of establishing a standard and highly competitive oil palm plantation business in Benin City – Edo State. We know that no matter where we intend starting our oil palm plantation business, we would be required to fulfill most of the items listed below;

  • The Fee for registering the business (venture) in Nigeria – N15,000
  • Legal expenses for obtaining licenses and permits as well as the accounting services (software, P.O.S machines and other software) – N30,000
  • Marketing promotion expenses for the grand opening of Benson Edosa & Sons Oil Palm Company – N45,000
  • The cost for hiring Business Consultant – N50,000
  • Insurance (general liability, workers’ compensation and property casualty) coverage at a total premium – N30,000
  • The amount needed to acquire / lease a farm land – N100,000
  • The amount required for preparing the farm land – N80,000
  • The cost for acquiring the required working tools and equipment / machines / fencing et al – N30,000
  • The amount required for purchase of the first set of palm kernel seedlings et al – N50,000
  • The amount required to set up a standard palm oil processing plant within the farm facility – N100,000
  • Operational cost for the first 3 months (salaries of employees, payments of bills et al) – N200,000
  • The cost for Start-up inventory (palm kernel supply, storage tanks, drums, bottles and packaging materials et al) – N220,000
  • The cost of purchase of distribution trucks / lorry – N1.2 million
  • The cost of launching a website – N25,000
  • The cost for our opening party – N30,000
  • Miscellaneous – N30,000

We would need an estimate of 3million Naira to successfully set up a standard palm plantation with palm oil processing plant in Edo State. Please note that this amount includes the salaries of all the staff for the first 3 months of operation.

Generating Startup Capital for Benson Edosa & Sons Oil Palm Company

No matter how fantastic your business idea might be, if you don’t have the required money to finance the business, the business might not become a reality. Finance is a very important factor when it comes to starting an oil palm plantation business.

No doubt raising startup capital for a business might not come cheap, but it is a task that an entrepreneur must go through.

Benson Edosa & Sons Oil Palm Company is a family business that is owned and financed by Chief Benson Edosa and his immediate family members. They do not intend to welcome any external business partners which is why he has decided to restrict the sourcing of the startup capital to 3 major sources. These are the areas we intend generating our startup capital;

  • Generate part of the startup capital from personal savings and sell of stocks
  • Source for soft loans from family members and friends
  • Apply for loan from my Bank

N.B: We have been able to generate about 1 million Naira ( Personal savings N800,000 and soft loan from family members N200,000 ) and we are at the final stages of obtaining a loan facility of 2 million Naira from our bank. All the papers and documents have been signed and submitted, the loan has been approved and any moment from now our account will be credited with the amount.

14. Sustainability and Expansion Strategy

The future of a business lies in the number of loyal customers that they have, the capacity and competence of their employees, their investment strategies and business structure. If all of these factors are missing from a business, then it won’t be too long before the business close shop.

One of our major goals of starting Benson Edosa & Sons Oil Palm Company is to build a business that will survive off its own cash flow without the need for injecting finance from external sources once the business is officially running. We know that one of the ways of gaining approval and winning customers over is to retail our palm products a little bit cheaper than what is obtainable in the market and we are well prepared to survive on lower profit margin for a while.

Benson Edosa & Sons Oil Palm Company will make sure that the right foundation, structures and processes are put in place to ensure that our staff welfare are well taken of. Our company’s corporate culture is designed to drive our business to greater heights and training and retraining of our workforce is at the top burner.

We know that if that is put in place, we will be able to successfully hire and retain the best hands we can get in the industry; they will be more committed to help us build the business of our dreams.

Check List / Milestone

  • Business Name Availability Check: Completed
  • Business Registration: Completed
  • Opening of Corporate Bank Accounts: Completed
  • Securing Point of Sales (POS) Machines: Completed
  • Opening Mobile Money Accounts: Completed
  • Opening Online Payment Platforms: Completed
  • Application and Obtaining Tax Payer’s ID: In Progress
  • Application for business license and permit: Completed
  • Purchase of Insurance for the Business: Completed
  • Leasing of a farmland and facility for processing and storing palm oil and renovating the facility as well: In Progress
  • Conducting Feasibility Studies: Completed
  • Generating capital from family members: Completed
  • Applications for Loan from the bank: In Progress
  • Writing of Business Plan: Completed
  • Drafting of Employee’s Handbook: Completed
  • Drafting of Contract Documents and other relevant Legal Documents: In Progress
  • Design of The Company’s Logo: Completed
  • Printing of Promotional Materials: In Progress
  • Recruitment of employees: In Progress
  • Purchase of the needed oil palm cultivation tools and equipment, palm oil processing equipment, furniture, racks, shelves, computers, electronic appliances, office appliances and CCTV: In progress
  • Creating Official Website for the Company: In Progress
  • Creating Awareness for the business both online and around the community: In Progress
  • Health and Safety and Fire Safety Arrangement (License): Secured
  • Establishing business relationship with vendors – wholesale suppliers / merchants of palm oil: In Progress
  • Purchase of delivery trucks: Completed
  • Open access
  • Published: 11 October 2021

Oil palm in the 2020s and beyond: challenges and solutions

  • Denis J. Murphy 1 ,
  • Kirstie Goggin 1 , 2 &
  • R. Russell M. Paterson 3 , 4  

CABI Agriculture and Bioscience volume  2 , Article number:  39 ( 2021 ) Cite this article

94k Accesses

115 Citations

196 Altmetric

Metrics details

Oil palm,  Elaeis guineensis , is by far the most important global oil crop, supplying about 40% of all traded vegetable oil. Palm oils are key dietary components consumed daily by over three billion people, mostly in Asia, and also have a wide range of important non-food uses including in cleansing and sanitizing products.

Oil palm is a perennial crop with a > 25-year life cycle and an exceptionally low land footprint compared to annual oilseed crops. Oil palm crops globally produce an annual 81 million tonnes (Mt) of oil from about 19 million hectares (Mha). In contrast, the second and third largest vegetable oil crops, soybean and rapeseed, yield a combined 84 Mt oil but occupy over 163 Mha of increasingly scarce arable land. The oil palm crop system faces many challenges in the 2020s. These include increasing incidence of new and existing pests/diseases and a general lack of climatic resilience, especially relating to elevated temperatures and increasingly erratic rainfall patterns, plus downstream issues relating to supply chains and consumer sentiment. This review surveys the oil palm sector in the 2020s and beyond, its major challenges and options for future progress.

Conclusions

Oil palm crop production faces many future challenges, including emerging threats from climate change and pests and diseases. The inevitability of climate change requires more effective international collaboration for its reduction. New breeding and management approaches are providing the promise of improvements, such as much higher yielding varieties, improved oil profiles, enhanced disease resistance, and greater climatic resilience.

Introduction

The palms, or Arecaceae, are a family of stem-less, tree-like monocot plants that are highly significant to humans and wider biodiversity, especially in the tropics (Cosiaux et al. 2018 ). The African oil palm, Elaeis guineensis , is native to West Africa and in terms of agriculture, it is perhaps the world’s most important palm species. Oil palm fruits are available year-round and have served as semi-wild food resources in traditional societies for > 7000 years. In its regions of origin the oil palm plant has great significance to local people and for wider biodiversity (Cosiaux et al. 2018 ; Reddy et al. 2019 ; Okolo et al. 2019 ). Cultivation of oil palm as a crop was originally an informal process mainly confined to the West/Central African coastal belt between Guinea/Liberia and Northern Angola (Corley and Tinker 2015 ). Globally, the best production levels are achieved in high rainfall areas in equatorial regions between 7° N and 7° S. During the nineteenth century, oil palm seeds were transported to the Dutch East Indies (modern Indonesia), and to the Malay States (modern Malaysia), as part of colonial ventures to grow newly introduced cash crops in the region. During the twentieth century, more systematic oil palm cultivation on plantations gradually became established in the Malay States. In terms of large-scale commercial production, however, oil palm is a relatively recent crop that only emerged into global prominence later in the twentieth century, with an almost linear rise from 1990 to the early 2000s, followed by a plateau after 2007 (Malaysian Palm Oil Production by Year 2020 ). This was largely due to government initiatives in the 1970s and 80 s aimed at improving the agriculture and economy of the newly independent nation of Malaysia (Corley and Tinker 2015 ; Murphy 2014 ). The later rise of the oil palm industry in Indonesia occurred during the twenty-first century when there was a > 5-fold increase in oil production from 8.3 Mt in 2000 to 43.5 Mt in 2020.

Today, oil palm is crucial to the economies of many countries, especially Indonesia and Malaysia, from which large quantities of its products are exported in the form of oil, meal and other derivatives (Murphy 2019 ). More widely, oil palm is now cultivated in plantations across the humid tropics of Asia, Africa and the Americas, from where its products are exported to global markets. However, despite its increasing cultivation on three widely separated continents, the vast majority of oil palm is still grown in the two adjacent South East (SE) Asian countries of Indonesia and Malaysia (Table 1 ) that generate about 85% of the entire global production (Murphy 2014 , 2015 , 2019 ; Statista 2020 ; Goggin and Murphy 2018 ). The major importing regions, collectively responsible for about 60% of total palm oil imports, are the Indian subcontinent (India, Pakistan, Bangladesh) with about 17 Mt, the EU-27 with 6.5 Mt, and China with 5 Mt (Statisa 2020 ).

There are two contrasting types of oil found in the two principal tissues of palm fruits, namely ‘palm oil’ and ‘palm kernel oil’ (Murphy 2019 ). Palm oil, extracted from the fleshy mesocarp tissue, is a deep orange-red, semi-solid fluid, whilst palm kernel oil is a white-yellow oil that is extracted mainly from the endosperm tissue of the kernel (seed). These two oils have very different fatty acid compositions (Table 2 ), which means they are used for different downstream applications in a range of industrial sectors (Goggin and Murphy 2018 ). In general, the relatively high saturated fat content of palm oil makes it particularly suitable for edible use as a solid vegetable fat (melting point ca. 35 °C). In contrast, palm kernel oil is a less dense product (melting point ca. 24 °C) that is mostly used for non-edible applications (Statisa 2020 ). A major use of palm kernel oil is as the key functional ingredient in many soaps, detergents and cosmetics. E. guineensis plants bear prolific numbers of oil-rich fruit bunches year-round, each containing between 1000–3000 individual fruits (Corley and Tinker 2015 ). Mesocarp-derived palm oil makes up about 89% the total fruit oil with the remaining 11% being derived from the seed or kernel. Because palm oil and palm kernel oil are extracted from fruits by different mechanical processes and have very different downstream uses, they enter separate supply chains immediately after extraction in mills.

In terms of annual production, the global oil palm industry is worth about US$ 60 billion, employing 6 million people directly plus an additional 11 million indirectly (Kadandale et al. 2019 ). Over 81.1 Mt of palm oils were produced globally in 2019–20, of which 72.3 Mt was mesocarp oil (hereafter referred to as ‘palm oil’) while 8.8 Mt was palm kernel oil (Statisa 2020 ). It is estimated that palm oil or palm kernel oil are present as ingredients in at least half of the products found in a typical supermarket. At least three billion people rely directly on palm oil as a regular part of their diet, and it is a staple cooking oil commonly used in African and Asian food preparation. As global populations increase, the demand for palm oil is likely to continue to rise. Estimates from various industry sources predict that between 93 and 156 Mt palm oil might be required by 2050 (Frost and Sullivan 2017 ; Harris et al. 2013 ; Pirker et al. 2016 ). However, these estimates do not consider the effect of climate change on production, which is likely to reduce the ability of the sector to meet these demands (Paterson 2020a , b , 2021a , b ) as discussed later.

In addition to its edible applications, the oil palm crop provides a wide range of non-food products that also include animal feeds. These feeds are derived from the seeds or kernels, which contain a protein-rich meal residue following oil extraction. Palm kernel meal is an often overlooked product of the crop, but is a useful livestock feedstuff that is exported globally. In 2019, about 7.6 Mt palm kernel meal was exported, almost exclusively (98%) from Indonesia and Malaysia (Indexmundi 2021 ). In order of importance, the major importing countries (75% of total 2019 imports) are the EU, New Zealand and Japan, where the meal is used in a variety of feed formulations, especially for ruminants such as cattle.

The image of oil palm has been adversely affected by detrimental environmental consequences of its cultivation, especially with respect to deforestation and haze creation (Paterson and Lima 2018 ). There is also great public concern about the plight of iconic species, and particularly the orangutan, in SE Asia. Some of the particular challenges currently faced by the industry include the following:

Greatly reduced demand for crop-derived biofuels, especially in Europe.

Serious production issues related to plantation management, labour shortages, replanting with improved crop varieties, mechanization etc.

Ongoing environmental and sustainability issues including deforestation, biodiversity loss and GHG emissions due to crop expansion.

Growing threats arising from climate change, including biotic factors, such as pests and disease, that could impact crop performance in unpredictable ways.

Increasingly serious supply chain and consumer issues including potential trade barriers and boycotts.

In all cases these issues will require attention by the industry during the rest of this decade and beyond.

Structure of the oil palm industry

Modern commercial oil palm cultivation began in Malaysia in 1917 (Basiron 2007 ) and over 88% of palm oil is still produced by Malaysia plus the neighbouring countries, Indonesia and Thailand (Statista 2020 ). From 2001 to 2016, the expansion of oil palm plantations was particularly marked in this region with a 2.5-fold increase in Malaysia and a 4.2-fold increase in Indonesia (Xu et al. 2020 ). Over the past decade, oil palm crops have also been grown increasingly outside SE Asia (Murphy 2019 ), as suitable land in Asia becomes scarce and the changing climate is less conducive to cultivation (Paterson 2021a , b ). For example, there is only an estimated 300,000 ha of available land for palm expansion remaining in Malaysia (Villela et al. 2014 ), with increasing government prohibitions for environmental reasons, on further encroachment onto forest and peatland in Indonesia (Jackson 2019 ). Continuing increases in global demand over the past five decades have meant that the cultivation of oil palm has been widely regarded by many tropical countries as a method to boost their economies (Arrieta et al. 2007 ; Ohimain and Izah 2014 ; Paterson et al. 2015 ).

In SE Asia, the primary regions for oil palm production in Indonesia are Sumatra and Kalimantan (Paterson et al. 2015 ; Suryantini and Wilandari 2018 ), while in Malaysia the peninsula was the historical centre, although considerable expansion has occurred more recently in Sabah and Sarawak. Due their climatic suitability, oil palm cultivation has also spread to other SE Asian countries, especially Thailand and Papua New Guinea, with Myanmar and the Philippines in the initial stages of development where the crop is important to the economies of each of these countries (Corley and Tinker 2015 ; Suryantini and Wilandari 2018 ; Pornsuriya et al. 2013 ; Somnuek et al. 2016 ; Woods 2015 ). Due to its profitability, there are also significant emerging oil palm industries in much of tropical Africa with Nigeria, Ghana, Ivory Coast, Cameroon, Sierra Leon, Benin, Angola, and DRC as the main producers (in that order) (Paterson 2021a ). However, in most cases African oil palm crops are mainly used for local consumption, with Cameroon and Ivory Coast as the only major palm oil exporters (Corley and Tinker 2015 ). Nigeria is the fifth highest producer globally, with an annual 1·0 Mt, although this is dwarfed by Indonesia with 42.5 Mt and Malaysia with 18.5 Mt (Statista 2020 ).

In the Americas, the first oil palm plantations were established in Honduras and Costa Rica and currently the largest industries are in Colombia and Ecuador, although Brazil is also expanding its production (Corley and Tinker 2015 ; Murphy 2019 ; Nahum et al. 2020 ). South and Central America are considered as favourable areas for oil palm development due to their theoretical ability to produce palm oil. There is well over 1.5 Mha of planted oil palm in Latin America with Brazil having the largest future potential, although currently the leading producer is Colombia with an annual 1.5 Mt. Although the environmental consequences of increasing oil palm cultivation require careful consideration (Murphy 2015 ; Paterson 2020a , b , 2021a ), these countries could potentially increase their market share in a sustainable manner, for example by only converting land currently used for pasture or illegal coca cultivation. This will be important as land in Malaysia and Indonesia becomes less available (Paterson and Lima 2018 ). However, there are also important climate change constraints for a truly sustainable future industry in the Americas, Africa, and SE Asia (Paterson 2021a , b , c , d ; Indexmundi 2021 ; Paterson et al. 2015 , 2017 ).

A recent study shows the global distribution of smallholder and industrial plantations at high resolution (Descals et al. 2020 ). Smallholders account for 30 to 40% of global land palm oil cultivation (Hambloch 2018 ; Euler et al. 2016 ). In SE Asia there are more than three million smallholders, nearly all of whom cultivate individual family-owned and managed plots of less than 50 ha and often as little as 1–2 ha. In Indonesia, which is the largest oil palm producing country, smallholder plots account for 40% of the total crop area, although they only produce 30% of total national output (Euler et al. 2017 ). However, although the larger commercial plantations tend to be more efficient in terms of oil yield and overall economics, smallholder units serve important social roles in providing income and employment to rural populations (Murphy 2015 ; Euler et al. 2016 ). Smallholder units are also more likely to supply palm oil for local consumption rather than for export. This is particularly true for parts of Indonesia and Africa where the crops can be regarded as key elements in local food security and economic wellbeing (Krishna et al. 2017 ; Kubitza et al. 2018 ). Interestingly, there is also evidence that smallholdings can have lower environmental impacts (Lee et al. 2014 ) and higher biodiversity levels than commercial plantations (Razak et al. 2020 ).

In contrast, commercial plantations tend to be part of large ventures that are often owned by multinational companies that can extend over tens of thousands of hectares, with the largest totalling about one million ha. In terms of global trade, palm oils from commercial plantations are by far the most important contributors. In some cases, the larger plantation companies also own or control many key downstream elements in palm oil supply chains. These include mills, refineries, shipping operations and the distribution networks to processors and retailers in export destinations.

In summary, oil palm cultivation is still highly concentrated in SE Asia, but the focus of future expansion is likely to be elsewhere in the humid tropics, especially in West Africa and northern regions of South America. Therefore, the oil palm industry is a hybrid of large scale, globally focussed, commercial farming and small scale production of a cash crop, often for local consumption. As discussed below, the industry must manage the effects of environmental factors, such as climate change and increased disease incidence on cropping systems, as well as changing consumer sentiments in export destinations.

The environmental context

Oil palm is widely considered as a problematic crop. This has been mainly due to the environmental and ecological impacts of some of the land conversions to oil palm plantations over the past two decades, especially in Indonesia. In many cases these have displaced pristine tropical habitats and affected iconic wildlife species, such as orangutan (May-Tobin et al. 2012 ; Gaveau et al. 2014 ). The EU is the second largest global importer of palm-based oils and this consumer-led demand has been one of the drivers of the expansion of recent oil palm cultivation. Since 2000, increased global demand for biofuels and other non-food products (mainly from Europe), and for food (mainly from India and China), were the major factors behind the conversion of land in SE Asia to oil palm cultivation. In Indonesia the area of oil palm cultivation more than trebled from 2.5 Mha to over 8 Mha between 2000 and 2014 (Indonesia: Palm oil expansion unaffected by Forest Moratorium 2013 ). In some cases this has led to significant habitat loss and reductions in biodiversity as complex ecosystems are replaced with simpler species-poor plantation systems, as well as concerns about increased GHG emissions as land is converted to oil palm (Dislich et al. 2017 ; Meijaard et al. 2020 ; Carlson et al. 2012 ; Barcelos et al. 2015 ).

Several studies have examined the potential impact of land use and climate change on biodiversity in Borneo, where a great deal of oil palm planting has occurred during the past decade (Scriven et al. 2015 ; Gaveau et al. 2016 ). Recommendations from these and other studies, include the need to establish nature reserves in upland areas where climate change will be less severe and also to improve connections between reserves and plantations via wildlife corridors (Scriven et al. 2019 ). One of the most controversial aspects of new palm cultivation in SE Asia is the use of tropical peatland, especially in Borneo. There are several ongoing studies of the impact of peatland conversion in terms of GHG emissions, and other environmental studies have been carried out in association with the major certification scheme that is run by the Roundtable on Sustainable Palm Oil (RSPO). Examples include the following articles: (Gunarso et al. 2013 ; Chase et al. 2012 ; Dalal and Shanmugam 2015 ; Tonks et al. 2017 ; Cook 2018 ).

As a result of such studies, RSPO insist that to gain certification, new plantings since November 2005, must not have replaced primary forest or any area required to maintain or enhance one or more High Conservation Values (HCV). An HCV assessment, including stakeholder consultation, must be conducted prior to any conversions and dates of land preparation and commencement must also be recorded. The HCV assessment process requires appropriate training and expertise, and must include consultation with local communities, particularly for identifying social HCVs. Development should actively seek to utilize previously cleared and/or degraded land. Plantation development should not put indirect pressure on forests through the use of all available agricultural land in an area. In order to improve the participation of smallholders, local certification schemes, such as the Malaysian Sustainable Palm Oil (MSPO) and Indonesian Sustainable Palm Oil (ISPO) initiatives, have been set up, although internationally traded palm oils are almost exclusively certified by RSPO.

Several studies suggest that limited oil palm expansion might be possible on already degraded land, without the need to convert mature tropical forests (Jackson 2019 ; Wicke et al. 2011 ), and that smallholdings may have lower environmental impacts than commercial plantations (Lee et al. 2014 ). Despite these caveats, there is considerable pressure for governments to impose much stricter controls, and even outright bans, on the conversion of tropical peatlands and non-degraded forest to oil palm. Although there have been encouraging statements along these lines from politicians in the two major producing countries, these remain largely aspirational at present and more effective action is required.

Pests and diseases

Oil palm crops are affected by several economically important pests and fungal pathogens, of which several of the most serious diseases will now be considered (Corley and Tinker 2015 ).

Fungal diseases

Basal Stem Rot (BSR) is caused by the fungus, Ganoderma boninense (Fig.  1 ), is a serious disease of oil palm, which can reduce yields by 50–80%. It has increased over recent decades due to its spread from infection foci at a greater rate, following repeated cycles of crop planting on infested sites. In Malaysia, BSR is often reported in young plants and seedlings, whereas previously only mature oil palms were infected (Paterson 2019a , 2020c ). By the time an oil palm stand is halfway through its ca. 25-year economic lifespan, BSR can kill 80% of plants. Furthermore, expansion of industrial oil palm cultivation began early in Sumatra, where G. boninense adaptation to the environment is most likely to occur. This region contains the highest levels of disease, implying an association between the duration of oil palm cultivation and higher disease concentrations. BSR is found increasingly in inland peninsular Malaysia and Sabah, and in some cases is at high levels in places where it has not previously been detected. BSR was also reported at high levels in oil palm grown on inland lateritic soils and peat soils, irrespective of cropping history, whereas before such soils had been disease-free. By the time of replanting (every 25 years), 40–50% of palms were lost in some fields, with the majority of standing palms showing disease symptoms. This information indicates a trend for increasing BSR with projected climate change. However, the climate for growing oil palm is currently optimal and has been so for many decades. The increase in disease previously reported was from increased virulence of the fungus, rather than increased susceptibility of oil palm due to a less suitable climate.

figure 1

Ganoderma boninense basidiomata on oil palm stems. Images are from the authors’ personal collections (RRMP & DM)

BSR may increase further by natural selection of more virulent strains and oil palm cannot always adapt rapidly enough to respond to changes in pathogen virulence. The BSR pathogen has the ability to infect oil palm plants at a rate of as much as 80% incidence over half of its economic life span (Corley and Tinker 2015 ). Ganoderma is a variable genus with poorly defined species concepts and will adapt to climate change more readily than oil palm via natural selection of more virulent strains (Mercière et al. 2017 ). In Indonesia, BSR is less severe in Kalimantan than in Sumatra, probably due to younger crop rotations (Suryantini and Wilandari 2018 ; Paterson 2019a , b , 2020d ). In Thailand, national BSR incidence is relatively low with a reported rate of 1.53%, although it is more widespread in the south (Basal stem rot of oil palm 2020 ). In Southern Thailand, BSR incidence may be influenced by proximity to peninsular Malaysia where disease rates are also high (Pornsuriya et al. 2013 ). In Papua New Guinea, BSR incidence is not as high as in other areas of SE Asia, although rates of 50% have been recorded in some regions. An average of 25% infection is a plausible scenario for this country as the initial incidence is lower than in Malaysia and Indonesia. BSR incidence is probably low in Myanmar as the plantations are more recent and distances between them are large. Myanmar has a distinctly different climate to the rest of SE Asia and is less capable of growing oil palm per se (Paterson 2020b ).

Paterson ( 2020c , d ) considered BSR in Malaysia and Indonesia respectively and in the regions of the countries. Disease incidence was much higher in peninsular Malaysia than in Sarawak, and especially Sabah. Sabah may therefore be a more sustainable region from the perspective of BSR incidence. In Indonesia, Sumatra and Java had particularly high incidences compared to other areas such as Sulawesi and Papua. These scenarios indicated which regions may be suitable in terms of future sustainability of the industry. However, the environmental effects, especially from deforestation, should be of prime importance in planning new plantations.

Fusarium oxysporum f.sp. elaeidis (Foe) results in acute and chronic wilt of oil palm particularly in Africa (Paterson 2021e ). A major outbreak devastated OP in West and Central Africa where it has a particularly high incidence (Rusli 2017 ). Foe in Malaysia and Indonesia is controlled by quarantine procedures, although native strains can infect oil palm in vitro. Avoiding introduction from endemic areas is essential to prevent Foe in regions where it is does not normally exist. However, importation of breeding materials from Africa is required to expand genetic diversity in Malaysia and Indonesia, implying a risk from infested seed and pollen. Quarantine procedures in Malaysia and Indonesia are undertaken, although the risk of spread remains, especially because climate change may increase disease (Rusli et al. 2015 ).

In the Ivory Coast, 20% of palms planted from 1964 to 1967 displayed vascular wilt symptoms, with some crosses at 70% (Cochard et al. 2005 ). But from 1976 to 1983 vascular wilt rates of < 2% were observed and in the 1990s, it was difficult to find symptoms in plantations. These reductions were attributed to breeding for resistance. Rusli et al. ( 2015 ) found that Foe infection of oil palm was frequent in Ghana with incidences of 10.4% and 8.3% and also detected the presence of Foe in ca. 11% of symptomless palms in plantations. Decades of selection and breeding for wilt resistance occurred in Ivory Coast where 20% of palms planted from 1964 to 1967 displayed vascular wilt symptoms, with some crosses at 70% (Cochard et al. 2005 ). Rusli ( 2017 ) demonstrated that Malaysian oil palms were susceptible to infection by Foe strains from Africa.

Phytophthora palmivora is a fungus-like oomycete and a notorious pathogen of oil palm, causing severe damage in Latin American countries, such as Colombia (Corley and Tinker 2015 ). The disease has recently devastated > 30,000 ha in South West Colombia and > 10,000 ha in the Central Zone, and the rapid increase in the disease may be related to climate change. Acute and chronic forms are found, and it is possible that several different diseases have been described under one name. The acute forms are present in Colombia and Ecuador, with the chronic forms found in Brazil (Corley and Tinker 2015 ). P. palmivora disease of oil palm is unreported in Malaysia and/or Indonesia, although a similar spear rot of oil palm has been reported in Africa and Thailand, which may involve P. palmivora . Many other hosts for the oomycete exist in Malaysia and Indonesia (e.g. durian) and, in view of a recent extreme outbreak in Colombia, P. palmivora presents a potentially severe threat to Malaysian and Indonesian plantations (Paterson 2020a ). More assessments of infectivity are essential given that outbreaks of P. palmivora could cause severe problems for major SE Asian oil palm industries.

Other fungi Several lesser fungal diseases also cause problems for oil palm (Corley and Tinker 2015 ). Bunch failure is used to describe oil palm fruit bunches that fail to develop from anthesis to harvest, and the disease can be caused by the basidiomycete Marasmius palmivorus. Another basidiomycete, G. philippii , is closely related to G. boninense but is in fact a trunk rot of Acacia trees that is also listed as an oil palm pathogen (Corley and Tinker 2015 ). This species may become more frequently isolated from oil palm due to climate change. Phellinus noxius is a basidiomycete, partially responsible for upper stem rot of oil palm, occurring together with G. boninense in some cases. Haematonectria haematococca has been implicated in spear rot of oil palm in vitro. Dry basal rot of oil palm is caused by the ascomycete Ceratocystis paradoxa (anamorph =  Thielaviopsis paradoxa ), which also has been implicated in oil palm fatal yellowing in, for example, Colombia. Cercospora ealidis is widespread throughout Africa and causes Cercospora leaf spot. It is infrequent in Asia and is primarily a disease of nursery seedlings and frequently carried forward to plantations where it can survive for a long time (Corley and Tinker 2015 ). Glomerella cingulata is responsible for anthracnose disease in oil palm, although it is not severe currently. All these are diseases of oil palm and it is important to assess how they will be affected by climate change in future studies.

In general, pest species of oil palm do not have as much impact on the crop as diseases, with the possible exception of the rhinoceros beetle, Oryctes rhinoceros , which emerged as the major pest of oil palm in SE Asia in the 1980s. Although chemical insecticides can be effective, they are expensive, they can affect beneficial insects, and the target organisms may develop resistance. This has led to development of biocontrol strategies, the most effective of which are the deployment of two pathogens of the beetle, namely the entomophagous fungus Metarhizium anisopliae and the Oryctes virus (Ramle et al. 2005 ). Both pathogens are specific to rhinoceros beetles and as such will not affect other insects. The Oryctes virus appears to be endemic in the beetle population, and deliberate augmentation can increase infection levels to > 75%. Metarhizium fungal spores can be applied to areas of infestation as a spray that is highly effective at controlling, but not totally eradicating, the beetles. The combined use of these and other natural pathogens of the rhinoceros beetle have the potential to reduce its harmful impact on the crop, while also minimizing risks of resistance development.

With the projected increase in oil palm replanting over the coming years, it will be important to consider the wider release of such biocontrol agents into areas where rhinoceros beetle incidence is particularly high. These and other forms of integrated pest management are being investigated as primary options in plantations across SE Asia (Ramle et al. 2005 ; Kalidas 2013 ). The rapid expansion of high intensity commercial plantations in new regions such as West Africa and South/Central America, plus climatic changes, are likely to result in the emergence of new pests and pathogens. Therefore, it will be important for the public sector and industry to work together in developing improved methods of surveillance and early detection of such threats (Kalidas 2013 ; Caudwell and Orrell 1997 ).

Impacts of climate change

The negative impacts and significance of climate change are well documented in the scientific literature and are now broadly accepted by most of the general public. Climate change threatens the sustainability of crop production via factors such as temperature, rainfall and disease patterns (Rosenzweig et al. 2008 ). However, the likely effects on tropical crops remain less well known, especially in SE Asia, Africa and Latin America (Ghini et al. 2011 ; Feeley et al. 2017 ; Sarkar et al. 2020 ), although recent research has started to address the situation for oil palm (Paterson 2019a , b , 2020b , c , 2021a , b ; Paterson and Lima 2018 ; Paterson et al. 2015 , 2017 ; Sarkar et al. 2020 ; Shabani et al. 2012 ), as discussed below. Climate change effects on natural systems require prediction to mitigate consequential changes in diversity and ecosystem function (Feeley et al. 2017 ). Mapping of plant disease distributions can influence biosecurity planning, specifying areas that qualify for eradication or containment. The CLIMEX model has been developed for current and future species distribution where knowledge about climate change effects on species distributions is essential in mitigating negative impacts (Lenoir and Svenning 2015 ).

Effects of oil palm cultivation on climate change

Koh and Wilcove suggested that oil palm expansion occurs at the expense of forests acting as carbon sinks (Koh and Wilcove 2008 ). Dislich et al. ( 2017 ) determined 11 of 14 ecosystem functions decreased in levels of function by the introduction of oil palm plantations. Fitzherbert et al. ( 2008 ) determined that oil palm plantations support many fewer species than forests and some other tree crops: Habitat fragmentation and increased pollution can further increase GHG emissions. The detrimental aspects of increasing numbers of oil palm plantations has been discussed in terms of deforestation and haze production from burning peat soil to clear ground for new plantations (Tonks et al. 2017 ; Cook 2018 ; Veloo et al. 2015 ). These processes release GHGs contributing to climate change (Dislich et al. 2017 ).

The conversion of tropical rainforests into oil palm plantations is the primary environmental impact of the industry (Paterson and Lima 2018 ). Forested areas are used for the expansion of plantations where the emissions from conversion exceeded the potential carbon fixing of oil palm (Paterson et al. 2015 , 2017 ). Oil palm production involving deforestation re-leases global anthropogenic emissions of 6–17% CO 2 (Wich et al. 2012 ). The highest carbon emitter countries from forest cover loss are Brazil, Indonesia and Malaysia with values of 340, 105, and 41 [Teragrams (Tg) C/year] respectively. Indonesia and Malaysia account for high C emissions from deforestation as they are the first and second highest producers of oil palm. Substantial palm oil production is also undertaken in Columbia and Nigeria (Paterson et al. 2017 ). Emissions from oil palm cultivation in Indonesia accounted for ca. 2–9% of all tropical land use emissions from 2000 to 2010 (Carlson et al. 2018 ) and deforestation accounted for about 30% of global warming-related pollution emissions in 2009, with Indonesia as the world’s seventh-largest producer of such emissions. Plantation expansion in Kalimantan, Indonesia contributed 18–22% of the country’s CO 2 emissions in 2020.

Large reductions in emitted GHGs and climate regulation function occur due to conversion of forest to oil palm plantations (Dislich et al. 2017 ). More GHGs and volatile organic compounds (VOCs), which are precursors to tropospheric ozone, are produced by oil palm plantations. GHGs emitted from land-clearing fires and land and plantation establishment are significantly greater than carbon sequestered by oil palm. VOCs, GHGs and aerosol particle emissions during fire periods result in direct and indirect changes of solar irradiation while undisturbed forests give lower air and soil temperature and higher air humidity microclimates compared to plantations (Dislich et al. 2017 ).

Indonesia has increased oil palm plantations, reducing drastically the primary forest. Sumatra has the highest primary rainforest cover loss in the country. Forest cover in Riau and Jambi declined from 93 to 38% between 1977 and 2009 changing microclimatic conditions from lack of natural forests regulation. Warming of land surface and increases in air temperature from climate change occur from oil palm expansion as observed in Sumatra (Paterson and Lima 2018 ). Oil palm foliage cover is lower, more open, and simpler than tropical rainforest foliage cover. Warming occurs from reduced evaporative cooling and warming induced by land cover change (LCC) exceeded the global warming effect.

The predominant compound contributing to the GHG from oil palm plantations is CO 2 whereas nitrous oxide and methane are at reduced concentrations, although with greater effect per molecule. Large releases of CO 2 from land-clearing fires occur, particularly on peat. Also, fires indirectly increase emissions by increasing peat decomposition. Drainage of peat soil releases large concentrations of CO 2 to establish plantations by oxidation and decomposition: dissolved organic matter is removed from peat soils during drainage, which decomposes and releases additional CO 2 .

The very high fruit production of oil palm allows greater assimilation of CO 2 and produces more biomass than forests and is often used erroneously as an argument in favour of oil palm. This higher rate of C uptake does not compensate for that released when forests are cleared, as forests have more biomass than oil palm plantations unless very long timescales of hundreds of years are considered, well beyond the maximum time frame of ca. 80 years considered in Paterson et al. ( 2015 , 2017 ) in terms of the likely effect of climate change on suitable climate for oil palm growth for example.

Fires also add black carbon (soot), which increase global warming and oil palm plantations release more N 2 O into the atmosphere than forests, mainly from fertilizer use. Peatland deforestation for oil palm cultivation in West Kalimantan, Indonesia, increased GHG emissions greatly (Paterson and Lima 2018 ). Overall, the biological and managerial tools to surmount many challenges exist but need much better support (Murphy 2014 ) and will be discussed below. In addition, large scale conversion of tropical forest to oil palm plantations has detrimental effects on biodiversity.

Effects of climate change on oil palm cultivation

In terms of general effects, climate change is likely to affect sustainable production of palm oil as climatic suitability will decrease, with concomitant increases in economic and social problems in producing regions. Poleward movements in climate-related ranges of particular plants are by far the most frequently reported, including limited reports on poleward change in suitable climates for oil palm growth (Paterson et al. 2017 ; Fei et al. 2017 ). How species may react under climate change has been reported including the detrimental effect on the suitability of future climates on oil palm growth in a global setting (Paterson et al. 2017 ). Furthermore, oil palm production creates climate change as discussed above and this will affect detrimentally the ability to grow oil palms and alter their distribution (Paterson and Lima 2018 ). Oil palm is currently grown in optimal climatic conditions and has been for many decades (Corley and Tinker 2015 ).

Suitable oil palm climatic impact data have been used to create schemes for its mortality by postulating that large degrees of unsuitable and marginal climates in particular were likely to cause high amounts of mortality. Also, reductions in highly suitable and/or suitable climate per se would not cause a significant effect on oil palm mortality. Simulation modelling to determine suitable climate scenarios for growing oil palm (Paterson et al. 2017 ; Paterson 2019a ), were employed to estimate how climate suitability for oil palm growth would change the estimated mortality rate from unsuitable climatic conditions. Predicted percentage oil palm mortality was determined in (a) SE Asia (Paterson 2020b ) and (b) Latin America and extrapolated to Malaysia and Indonesia (Paterson 2020c ) (Fig.  2 a, b). These percentages represent large numbers of oil palms in Malaysia, Indonesia, Thailand and Papua New Guinea because of the large numbers grown in these countries. Information on oil palm mortality is also provided for some African countries in Paterson ( 2021e ). 

figure 2

(Adapted from data provided in Paterson ( 2021b )

a Oil palm mortality in Ecuador, Colombia and Brazil. b Oil palm mortality in Malaysia and Indonesia. These data take into account projected future changes in suitable climate for growing oil palm.

The detrimental effect of future climate changes on oil palm cultivation globally and on oil palm mortality in Kalimantan, Indonesia and some other SE Asian countries were determined (Paterson 2020b , c ; Paterson et al. 2017 ), which provided information relevant to Malaysia (see Table 3 ). High oil palm mortalities were predicted for Thailand, and Myanmar and low mortalities for Kalimantan and the Philippines, while Papua New Guinea was intermediate (Harris et al. 2013 ; Gunarso et al. 2013 ). Modelling of oil palm mortality for three South American countries, Malaysia and Indonesia was performed (Paterson 2020c ) using similar methods to Paterson ( 2020b ). The Latin American countries, particularly Brazil, were assessed to have high future mortalities, whereas the figures for Malaysia and Indonesia were much lower. These potential effects on mortalities will have detrimental consequences on future abilities to meet the demand for palm oil. High levels of mortality were determined for Peninsular Malaysia but not in Sabah or Sarawak in the future from unsuitable climate (Paterson 2020c ). In Indonesia, regions such as Sulawesi and Papua had low levels of mortality in contrast to Sumatra and Java where high mortality was determined (Paterson 2020d ). A study of predicted oil palm mortalities in South America found that by 2050, low mortalities are predicted in (a) the East Coast from Brazil to Suriname, (b) more centrally in Paraguay and (c) Colombia, Peru and Ecuador in the west. High mortalities were determined for Guyana, Bolivia, Western Brazil and Venezuela (Paterson 2021a ). By 2100, much higher mortalities were determined for all countries except Paraguay, which appeared virtually immune to the effects of future climate. Very high mortality of oil palm was determined for Ghana and Nigeria in Africa, especially by 2100 (Paterson 2021e ), whereas Cameroon had low levels,

African oil palms are likely more badly affected by climate change from increased GHGs, although there appears a low extinction risk in the immediate future. Furthermore, losses of oil palm habitats such as tropical rain forests are exacerbating the pressures on oil palm populations: their ecosystem functions and services will be highly sensitive to climate change. Blach-Overgaard et al. ( 2015 ) predicted climate suitability losses across almost all regions where palms occur in Africa and CLIMEX modelling indicated that Africa will have less suitable climatic conditions for oil palm cultivation (Paterson et al. 2017 ). However, sharp longitudinal trends to potential refuges from west to east Africa were found, which could allow oil palm to survive naturally, or by the creation of new plantations towards to east of the continent, with, of course, environmental concerns being paramount (Paterson 2021a ). Using similar methods, a phased increase in suitable climate was predicted, which implied more unsuitable climate for growing oil palm towards the centre of the South American continent (Paterson 2021b ). Increasing longitudinal trends in suitable climate for growing oil palm SE Asia were observed from current time to 2050 and 2100 from west to east (Paterson 2021c ). Paterson ( 2021d ) developed an improved model for determining suitable climate for growing oil palm in Africa which confirmed the west to east trend and could be employed in other regions such as South America and SE Asia. 

A significant negative relationship was found between annual average temperature and sea level rise and oil palm production in Malaysia temperature with rises of 1 to 4 °C potentially causing oil palm production to decrease by 10 to 41% (Sarkar et al. 2020 ). Future changes to suitable climates for growing oil palm worldwide were considered using modelling based on temperature, soil moisture and wet stress data (Paterson et al. 2017 ). The general predictions were for a reduced level of suitable climatic regions by 2050 and further reductions by 2100. The projections indicate serious consequences to the oil palm industry generally. In Africa, the climate is predicted to be less suitable for growing oil palm at the same rate, or faster than, Malaysia and Indonesia with the exception of Uganda where increases in climatic suitability were predicted. Paraguay appears to gain suitability in climate for growing oil palm in South America, whereas Venezuela will have a particularly low level of suitable climate. French Guiana, Surname and Guyana appear to maintain suitable climates and large losses were determined in west Brazil by 2100. The western countries of Colombia, Peru and Ecuador will suffer severe losses of suitable climate. Furthermore, there was a three-phase trend in suitable climate rather than a single direct longitudinal change (Paterson 2021b ). Vietnam, the Philippines, Papua New Guinea (PNG) and island Malaysia had increased suitable climate by 2050 in SE Asia. Large decreases in suitable climate by 2050 for Thailand, Laos and Cambodia, which are towards the west of SE Asia, were observed (Paterson 2021c ).

Climate has an important role in defining the range limits of oil palm distribution by exerting eco-physiological constraints (Paterson et al. 2017 ). However, factors such as soil properties and biotic interactions may prevent plants from colonizing sites that are otherwise suitable. Studies such as Paterson et al. (Razak et al. 2020 ) are unusual in that a wider range of climatic conditions are considered than only temperature (Paterson 2021a ). Changes in climate will have broad-scale impacts on the distribution of oil palm. Alterations in cold, heat and dry stresses were largely responsible for the changes in climatic suitability for oil palm cultivation, while wet stress was unimportant, hence extending the range of parameters from temperature alone (Paterson et al. 2017 ). Apart from temperature (Feeley et al. 2017 ) and diseases, a wide range of factors still awaits consideration, although studies on effects on crop production have been reported (Lobell et al. 2006 ).

One of the most important future threats is the emergence of new pests and diseases and/or the movement of existing diseases from one part of the world to another. The transfer of existing biotic threats could occur due to climatic factors, but another mechanism is movement via trade, travel or other human agency where potential pathogens might elude current biosecurity measures. For example, the serious impact of P. palmivora on plantations in S. America, and if this pathogen were to reach the central growing regions of SE Asia, its impact could be devastating (Paterson 2020a ; Mohamed Azni et al. 2019 ). Although biosecurity measures are already in place, these tend to be focussed on known threats and may not be able to cover all of the many potential entry routes for a new pathogen. A similar situation exists for Fusarium wilt disease of oil palm (Paterson 2021e ) with African countries suffering most from this particular disease.

An example of an unexpected new form of pathogen of oil palm is the orange-spotting coconut cadang-cadang viroid variant (OSCCC-Vd) (Coconut cadang-cadang viroid (cadang cadang disease) 2020 ). Viroids were only discovered in the 1970s and are the smallest and simplest known type of infectious pathogen, consisting of just one small, naked, circular single-strand of RNA that does not encode any proteins. The origin of viroids is unknown with some suggestions that they might date from an ancient non-cellular ‘RNA world’, although a more parsimonious hypothesis is that they have arisen de novo on multiple occasions as plant-specific pathogens (Catalán et al. 2019 ). OSCCC-Vd normally infects coconut plantations and is endemic in the Philippines, but early in 2011 a putative variant was found in oil palm plantations in Sabah, triggering a ban on the movement of oil palm materials to other parts of Malaysia. Although the threat of OSCCC-Vd eventually receded in the 2010s, this episode exposed problems in the surveillance mechanisms and phytosanitary procedures in the face of the sudden appearance of a hitherto unknown pathogen.

The effects of climate change on oil palm diseases by fungi and by the oomycete P. palmivora have been discussed and indicate a trend for increased BSR, Fusarium wilt  and P. palmivora incidence with climate change. Modelling of the effect of changes in climate on the infection levels of BSR in Sumatra, Indonesia, including quantitative BSR data, indicated that BSR would become even more serious after 2050 (Paterson 2019b ). Weather is a major factor in crop pathogenesis and, when crops suffer cold, heat or desiccation stress, they may be more susceptible. Mountain areas were considered in this assessment which affected some results considerably. For example, hilly regions in North Sumatra did not provide a suitable climate for oil palm.

A similar ‘Agriculture 4.0’ methodology of big data and simulation modelling was used to produce a scheme of how BSR might advance under future climates in Malaysia (Paterson 2019b ). The assessments of BSR were merely qualitative and indicated, nevertheless, that the levels of infection would also increase a great deal after 2050. Paterson ( 2020b ) considered future climate effects on BSR in Kalimantan and alternative countries in SE Asia. Kalimantan and the Philippines were assessed as sustainable, but Thailand and Myanmar were unsustainable, while Papua New Guinea was intermediate in sustainability (Fig.  3 ). P. palmivora is prevalent in South America and Paterson ( 2020c ) extended the principles described above to the disease. Colombia and Ecuador were highly susceptible, while Brazil was less so. However, a severe threat to Malaysia and Indonesia was assessed, which would require increased future vigilance to control the disease. Paterson ( 2021e ) indicated an equivalent situation for Fusarium wilt of oil palm focusing on African countries extrapolated to Malaysia and Indonesia. 

figure 3

Basal stem rot in three S E Asian countries. The incidence of disease was determined from the changes in suitable climate for growing oil palm as described in Paterson ( 2020b )

Amelioration of climate change effects on oil palm and vice versa

Procedures for amelioration of the effects of climate change on oil palm and the effect of oil palm on climate change, have been discussed as partially based on CLIMEX models (Paterson and Lima 2018 ). The situation with the oil palm industry cannot be business as usual in light of the effects of climate change on oil palm and vice versa. A series of procedures have been devised to address how the industry might mitigate these problems (Paterson and Lima 2018 ). Many of these measures will help to maintain the biodiversity normally associated with forests because they will stop the plantation being a monoculture. Also, the soil microfauna will likely increase as a result of these measures.

Reducing the effects of oil palm on climate change

Plantation management measures can prevent or reduce losses of some ecosystem functions which will reduce climate change. These include (a) avoiding illegal land clearing by fire, (b) avoiding draining of peat, and (c) using cover crops, mulch, and compost (Dislich et al. 2017 ). Reducing GHG by limiting oil palm expansion to areas with moderate or low carbon stocks is most effective. This involves ceasing development of plantations on peatland and enforcing the moratorium on new concessions in primary forests. In addition, rehabilitation and restoration of converted peatlands are an option. Limiting the problems of flooding may prevent increased CH 4 emissions on mineral soils. Reducing unnecessary expansion of plantations and ensuring existing ones are managed optimally are crucial. Mechanisms such as (a) reduced emissions from deforestation and forest degradation, plus conservation, sustainable management of forests, and enhancement of forest carbon stocks (REDD+), (b) national greenhouse gas accounting, and (c) accurate emission factors for C dynamics are essential (Comeau et al. 2016 ). Considerable funding has been obtained for REDD + scheme. REDD + proposals include growing oil palm on reclaimed soil and replacing the use of fertilizer with other methods. A few plantations are replacing grassland or scrub where the average C content of the plantation will exceed that of the previous vegetation and so becoming a greater C sink.

Controlling disease may assist in decreasing the unwanted expansion of plantations as yields will be increased from reduced disease in current plantations, such as described for Ganoderma rots of oil palm (see below). The current awareness of environmental issues makes optimizing current plantations by reducing disease imperative in any case. Reducing nitrogen fertilizer is an effective way to decrease nitrogen-based emissions (Dislich et al. 2017 ). Oil palm plantations release large quantities of nitrous oxide (N 2 O) into the atmosphere linked to nitrogen (N) fertilizer use. An option for oil palm planting, without threatening tropical rain forests, is the rehabilitation of anthropogenic grassland that was created by human clearance of natural forest many centuries ago. For example, there are extensive areas of anthropogenic grassland in Indonesia where much of the spread of oil palm plantations will take place (Paterson and Lima 2018 ).

Reducing effects of climate change on oil palm

Evidence is growing of the existing and likely future impacts of anthropogenic climatic changes on the oil palm industry. Immediate priorities should include further research to understand climatic effects on oil palm in the many regions of the tropics where the crop is now grown, and to begin the implementation of mitigation strategies to minimize adverse effects. Most climatic threats identified to date involve periods of elevated temperature and reduced rainfall, both of which cause stresses that impact on overall crop performance, and in particular oil yield. Increasingly well documented impacts of climatic cycles such as El Niño and La Niña have underlined the crucial role of climate for oil palm performance and oil yield (Rahutomo 2016 ; USDA 2016 ).

Strategies are required to minimize the adverse effects of climate change on oil palm cultivation: it cannot be business as usual for the industry. These practices may also decrease climate change from reduced deforestation if the yields of existing oil palm are optimized to cope with climate change. More dispersed cultivation outside the main producing countries could ameliorate threats from climate change as a wider range of climates would be encountered, some of which may be more suitable for oil palm. Current expansion into West Africa and South/Central America already underway was intended to create a more secure production system in the longer term. However, Latin America and Africa may be even more affected by climate change in terms of suitable climate for growing oil palm than SE Asia, implying that expansion will be unlikely. Even within these continents there are trends which will be useful for plantation managers (Paterson 2021a , b ).

Cultivation at higher altitudes and/or lower and higher latitudes may be possible beyond the lowland tropics as climate change progresses. An increase in highly suitable climate for growing oil palm by 2030 in Indonesia and Malaysia largely in mountainous regions of Sumatra, Sarawak, Borneo, and Sulawesi was reported (Paterson et al. 2015 ). There may be novel areas for oil palm development even under climate change, although in general, the climate suitability per se will be reduced. A caveat being potential biodiversity and ecological function loss if novel areas are converted from, for example, forest. The use of cover crops to reduce climate effects on oil palm may be possible and increases biodiversity. The sustainability of oil palm production will depend in part on using cover crops, especially under suboptimal conditions. Leguminous cover crops are grown to (a) coexist with oil palm following jungle clearing and planting/replanting, (b) provide complete cover to an otherwise bare soil, and (c) protect from erosion. They also perform multiple functions such as reducing soil water evaporation, reducing runoff losses, improving and maintaining soil fertility, and recycling of nutrients (Samedani et al. 2015 ). They promise reduced environmental pollution and improved crop yields. Legumes may reduce C and N losses from oil palm systems and increase soil C sequestration. Some examples for oil palm are as follows: Pigeon pea ( Cajanus cajan ), Calopo ( Calopogonium mucunoides Desv.), butterfly pea ( Clitoria ternatea ), white tephrosia ( Tephrosia candida ), and Brazilian stylo ( Stylosanthes guianensis  var.  guianensis ) some of which are already in use in SE Asia (Paterson and Lima 2018 ). The biodiversity of the plantation will be increased per se as each plant is introduced and by the increase in nitrogen fixing bacteria associated with the legume.

Soil management practices including (a) empty fruit bunch (EFB) application, (b) palm frond application and chemical fertilization improving soil fauna (worms, beetles, and ants) feeding activity, and (c) better soil chemical properties, all of which show considerable promise. EFB applications greatly enhanced soil fauna feeding activity and are associated with increased concentrations of base cations and soil moisture. This elevated biological activity has good potential to assist ecosystem functions such as litter decomposition, nutrient cycling, organic carbon stabilization, and ultimately oil palm productivity. The use and presence of earthworms may increase the effectiveness of growing oil palm, as they can contribute to soil turnover, structure formation and serve as a fertility enhancer and, again, increase biodiversity (Paterson and Lima 2018 ).

Developing new oil palm varieties resistant to climate change is another possibility (Rival 2017 ), although may not be easily achieved. Breeding oil palm for climate change requires multidisciplinary and collaborative research at a high level (see next section). Selecting for complete resistance, rather than tolerance to diseases, leads to high selection pressures for new variants of the pest/pathogen that can overcome the resistance in the crop. Resistant oil palm cultivars to climate change, or environmental stress, may overcome the less favourable growth conditions imposed by climate change (Tang 2019 ). However, it is impossible to know accurately what climate changes will be needed to enable resistant cultivar development, e.g. a cultivar resistant to desiccation stress may be sensitive to high temperature. High fertilizer use causes increased emissions of GHG from manufacturing, transportation, and application, and improvements will be required in oil palm nutrient uptake efficiency by breeding for suitable root systems.

Methods that ameliorate the effect of (a) climate change on oil palm and (b) oil palm cultivation on climate change include the following: Optimizing the rhizosphere by adding arbuscular mycorrhizal fungi (AMF) will also assist in reducing climate change with generalized benefits to oil palm growth, by reducing the need for fertilizer for example. Arbuscular mycorrhizal (AM) symbioses have beneficial effects on water transport to assist in overcoming drought conditions, of relevance particularly to ameliorating climate effects. Reducing fertilizer production and use will cause decreased emissions that lead to climate change, and the use of AM could ameliorate the effects on oil palm. AM and AMF addition will increase biodiversity within plantations (Paterson and Lima 2018 ).

“Slash-and-char” as an alternative to “slash-and-burn” of forests cleared for oil palm may be beneficial and feasible. Slash-and-char effectively produces charcoal to sequester CO 2 normally employed for forest residues. This could be used more extensively to improve agriculture in the humid tropics, enhancing local livelihoods and food security, while sequestering various forms of carbon (C) to mitigate climate change. Biochar soil management systems can deliver tradable C emissions reduction as the C sequestered is accountable and verifiable. The fraction of the maximum sustainable technical potential that is realized will depend on socioeconomic factors, including the extent of government incentives and the emphasis placed on energy production relative to climate change mitigation (Paterson and Lima 2018 ). Reduced tillage is another possibility for affecting climate change, where reducing tillage with AMF provides the optimal conditions for oil palm. Low tillage combination with AMF assists nutrient uptake, water relations, and protecting against pathogens and toxic stress, hence potentially ameliorating the effect of climate change on oil palm growth. Also, low tillage will decrease the emission of GHG from oil palm plantations (Paterson and Lima 2018 ).

An important tool used by policymakers to assess the impacts of a particular cropping system is life cycle assessment (LCA) (Schmidt 2015 ; Yee et al. 2009 ). This method seeks to estimate the impact of all aspects of the production process from planting seed, growing, harvesting and processing the crop (including fuel and labour costs); application of inputs such as water, fertilizer, herbicides, and pesticides; shipping of the oil overseas and downstream conversion into products such as foods and oleochemicals; transport to wholesalers, retailers, and consumers; and finally, disposal of products at the end of their lifetimes. Unfortunately, very few published studies cover the entire system ‘from cradle to grave’.

The most effective manner of addressing climate change is to adhere to policies devised at the 2019 COP25 climate meeting by reducing GHGs and future temperature rises. Conservation scientists, managers and environmental policymakers need to adapt their guidelines and policies to mitigate the impact of climate change (Brooke 2008 ). The new recommendations from COP meeting in Glasgow, Scotland in 2021 should be implemented as a matter of urgency as the most effective procedures for controlling climate change and consequently the effects of climate change on oil palm. Importantly, palm oil producers should also collaborate more effectively to help shape future policies on climate change and oil palm.

Breeding and biotechnology to improve oil palm as a crop

Recently, there have been several significant advances in breeding and biotechnology use for oil palm improvement. This is despite the challenges posed by the long-lived perennial nature of oil palms, which are large plants typically grown commercially for > 25 years. Hence, such biological strategies are much more complex and lengthier to implement compared to the smaller, faster growing annual crops. Breeding efforts have tended to focus on major economic traits such as oil yield and composition, pest and disease resistance, and plant architecture. Until relatively recently, oil palm breeding was also disadvantaged by the restricted genetic pool of commercial varieties, most of which were derived from small numbers of plants imported from Africa to SE Asia in the nineteenth and twentieth centuries. The available gene pool has now been greatly expanded, largely thanks to a series of germplasm collection expeditions to Africa and South America by pioneering breeders such as Rajanaidu et al. ( 2014 ). This has now allowed for genome-wide association studies (GWAS) of key traits such as oil yield and fatty acid composition (Ithnin et al. 2020 ) in the case of American oil palm and an Elaeis oleifera × Elaeis guineensis hybrid (Osorio-Guarín et al. 2019 ). Recent breeding-related reviews include genomics, genomic selection (Nyouma et al. 2019 ), transgenics (Costa et al. 2012 ), genome editing (Yarra et al. 2020 ), and marker-assisted selection (Ting et al. 2018 ; Babu et al. 2019 ). Following the publication of the oil palm genome sequence in 2013 (Singh et al. 2013 ), several detailed linkage maps have now become available for the use of breeders (Ong et al. 2019 ; Herrero et al. 2020 ).

Genomics-based strategies such as marker-assisted selection are already generating several useful advances for a variety of important traits that include oil yield, fatty acid composition and crop morphology (Xia et al. 2019 ; A quantum leap with genome select 2020 ). One of the most exciting recent developments was the announcement in mid-2020 of new breeding lines that are capable of more than double the current average oil yield (A quantum leap with genome select 2020 ). These plants are part of a genomics-based programme called ‘Genome Select’ carried out by plantation company Sime Darby, with a claimed 9.9 t/ha average yield over 5 years in field trials under optimum conditions. Given that current average palm oil yields are less than 4 t/ha, and that soybean and rapeseed only yield 0.3 and 1.2 t/ha respectively, this could be a game changer for the industry if two important conditions are met. Firstly, the experimental lines will need to be assessed for their oil yield performance under commercial plantation conditions in a range of geographic regions and, if necessary, crossed with locally adapted varieties. Secondly, the new higher yielding varieties need to be part of an ambitious replanting programme that will potentially replace a significant proportion of the estimated 2.5 billion oil palms that are currently under cultivation worldwide.

In terms of molecular genetics approaches to BSR mechanism and control, G. boninense genome and transcriptome data are now available with two G. boninense genome assemblies in the NCBI Depository (Wong et al. 2019 ), which provides a table listing publicly available genome and transcriptome data associated with the G. boninense and G. boninense -oil palm pathosystem. High-throughput next-generation sequencing and improved bioinformatics analyses has greatly facilitated G. boninense pathogenesis and housekeeping candidate gene identification. However, G. boninense remains poorly studied with respect to system-level gene function studies and biotechnology manipulation, with no available gene co-expression network models. Most studies have focused on host transcriptome data, whilst similar studies on the pathogen remain scarce. Ho et al. ( 2016 ) utilised mass RNA sequencing and de novo assembly of RNA-seq and were able to detect a high number of Ganoderma transcripts involved in lignin metabolism, such as manganese peroxidase and laccases. It is encouraging that, very recently, in silico mapping within an oil palm breeding program has revealed several QTL associated with genetic resistance to G. boninense (Daval et al. 2021 ).

Publication of the transcriptome of G. boninense at monokaryon, mating junction and dikaryon stages (Ho et al. 2016 ; Daval et al. 2021 ; Govender et al. 2020 ) will be useful for investigation of the mating process of this fungus. However, annotation and functional studies of these differentially expressed genes at different stages have not yet been done. RNAi as a tool for functional genomics to study developmental or virulent genes is lacking, although the genome has been sequenced, and there is the promise of new approaches to molecular breeding using genome editing technologies such as CRISPR-Cas-9. The role of genes involved in ergosterol biosynthetic pathway in G. boninense utilizing RNAi-mediated gene silencing is currently being investigated (Govender et al. 2020 ). The identification and verification of candidate genes are crucial for the application of these targets in RNAi-based crop protection, such as host-induced gene silencing (HIGS) or spray-induced gene silencing (SIGS). In addition, a study on the potential application of RNA silencing targeting DCL genes of G. boninense to confer protection against basa 581 stem rot is in progress (Govender et al. 2020 ). The availability of G. boninense genome data in public database (NCBI) enables potential candidate genes to be identified for testing and designing of efficient silencing constructs to avoid off-target transcripts, whilst the availability of the oil palm genome data helps to ensure the silencing constructs do not target and negatively affect the host. Because G. boninense on attacks oil palm by degrading lignin (Fig.  1 ), there is the possibility of modifying lignin to make oil palm plants more resistant. Alternatively, making the plant more resistant to initial fungal colonization by inhibiting carbohydrate metabolism first is a more logical approach that possibly overrides the emphasis on lignin per se (Govender et al. 2020 ).

Global supply chains and consumer sentiment

Palm oils are globally traded commodities with lengthy and complex supply chains, which can impede implementation of sustainability criteria, such as no-deforestation (Lyons-White and Knight 2018 ). This complexity is further increased by non-economic factors including sustainability, traceability, disease monitoring and pest management. More recently, however, a more constructive dialogue has emerged as several NGOs and community groups have joined with bodies such as RSPO and some major industry players in exploring initiatives such as certification schemes, that seek to guarantee that palm oils are sourced from sustainable and environmentally friendly sources (RSPO 2009 ).

Palm oil supply chain and traceability

Due to increasing awareness of the wider impacts of oil palm crops, sourcing of palm oil from verified, certified sustainable/responsible sources is of growing interest. Supply chain traceability ensures that information about products can flow easily and enable consumers to have maximum information about product origins. Certification schemes have mostly been established to improve sustainability within the industry, but for these to operate openly and transparently, supply chain traceability is an essential requirement. An overview of a typical palm oil supply chain is displayed in Fig.  4 . The most widely used sustainable certification scheme, which aims to improve traceability, is RSPO (RSPO Supply Chains 2017 ). A graphical overview of each model is also displayed in Fig.  5 :

Identity Preserved (IP): sustainable palm oil is derived from a single source and kept separate from all other sources throughout the entire supply chain

Segregated (SG): sustainable palm oil is derived from multiple sources and mixed; it is then kept separate from conventional palm oil throughout the supply chain

Mass Balance (MB): sustainable palm oil is mixed with palm oil from non-certified sources in a controlled and regulated manner

RSPO credits: the supply chain is not monitored for the presence of sustainable palm oil. But manufacturers and retailers can buy credits from RSPO-certified growers, crushers and independent smallholders

figure 4

A conventional palm oil supply chain with no certified traceability. The palm oil is produced, transported, refined, incorporated into products and then used by the customer

figure 5

The four different RSPO supply chain models including Identity Preserved, Mass Balance, Segregated and Book and Claim (source: www.rspo.org ). The premise of how each supply chain works is described in-text. All palm oils produced under RSPO certification are able to carry RSPO branding, though in the case of Mass Balance and Book and Claim, there is no guarantee that 100% sustainable palms oils are being used

Labelling, health and nutrition

Labelling has been shown to influence consumer purchasing habits and to have positive impacts on food production. RSPO believes that using its certification trademark on products will be central to raising awareness and driving demand. Palm oil is used for cooking and is also added to many ready-to-eat foods. Its taste is considered savoury and earthy, with some people describing its flavour as being similar to carrot or pumpkin. It has been a staple in West African and tropical cuisines for millennia (Corley and Tinker 2015 ). In recent years, the public debate on the health and sustainability of palm oil and its use by food industries has strongly influenced consumer choices. There has been a perception that palm oil, with its relatively high saturated fat content, has adverse nutritional qualities, despite its long history as an important indigenous foodstuff in the tropics. This perception has been strongly challenged by recent meta-analyses and prospective observational studies, mainly conducted in North America and Europe, that failed to demonstrate a correlation between total saturated fat intake and an elevated risk of cardiovascular disease (Chowdhury et al. 2014 ).

Production of sustainable palm oil is recommended so that consumers only buy from companies using palm oil certified under RSPO, or similar certification schemes that have transparent commitments to improved ecosystem services and human wellbeing (Ayompe et al. 2021 ). Certification schemes improve consumer confidence and provide a high level of guarantee that that areas of high conservation value are preserved, local communities are supported, and that palm oil plantation managers are implementing best practices including for sustainability and the fair use of labour (Carlson et al. 2018 ; Schoneveld et al. 2019 ; Furumo et al. 2020 ; Santika et al. 2021 ). Whilst some groups have criticized certification schemes for not moving far or fast enough, researchers and NGOs such as WWF are working with schemes like RSPO, to facilitate greater progress and to include more progressive criteria for best practice, in order to certified. An example of such developments was the announcement in mid-2021 of a multi-stakeholder initiative called Project Lampung (Bootman 2021 ). This was launched with the aim of linking smallholder farmers in the Lampung province of Indonesia with the NGO, Solidaridad, plus multinationals (including BASF, Cargill and Estée Lauder) in order to enable their palm oil to reach global markets via RSPO certification (RSPO 2021 ).

Future prospects

As with many other sectors of commercial agriculture, the global oil palm industry is currently facing significant future challenges as it comes under increased scrutiny in an increasingly interconnected world. Many of these issues, such as the future of palm-based biodiesel, the stagnation in crop yield and related labour problems, and concerns about sustainability and environmental impact are relatively longstanding, but they have been brought into sharper focus as a consequence of the COVID-19 pandemic that started in 2020 and is likely to have long-term effects on the industry as will now be discussed.

An uncertain future for palm-based biofuels

Over the past decade a growing proportion of palm oil has been used as a biofuel, mostly in the transport sector as biodiesel derived from methyl esters of the oil. Most palm biodiesel is consumed locally in Malaysia and Indonesia. This is due to government-supported mandates that enforce the mixing of palm biodiesel with petroleum-derived diesel. However, the use of palm biodiesel as a carbon–neutral fuel in the wider global transport sector has proved to be controversial, especially in the EU (Muzii 2019 ). Until very recently, a substantial and growing amount of palm biodiesel, totalling 4.9 Mt in 2018, was used in the EU. As shown in Fig.  6 , for over a decade the EU has steadily increased its imports of palm oil for fuel use while the amount used for food, feed and oleochemicals has declined from a high of almost 4 Mt to about 2.7 Mt (Chandran 2019 ). These data show that in 2018 the EU imported a total of 7.6 Mt palm oil but only 2.7 Mt (36%) of this was for food and personal care use, while the remaining 4.9 Mt (64%) was for use as transport biodiesel or fuel oil (e.g. for electricity generation).

figure 6

Source: Ref. Muzii ( 2019 )

EU palm oil consumption by end use. A steady decline in food use is mirrored by an increase in biodiesel use for palm oil imported into the EU from 2008 to 2018.

As described above, concerns about the environmental impact of oil palm cultivation and the use of food crops for biofuel, coupled with recent advances in electric vehicle (EV) technologies, mean that the EU is now moving away decisively from both crop-based biofuels and fossil fuels, with many countries seeking to replace all carbon-based fuels by 2050. In the medium term, as fossil oil use continues to decline and its price remains low, there are few prospects that palm biodiesel will compete effectively on price in international markets. This is likely to reduce the global market for palm biodiesel, although the additional palm oil that this would release should still be in high demand for edible uses. For example, Corley and Tinker 2015 ) estimated that, by 2050, a further 6 Mha of land could be required to meet total oil palm production requirements, which is a formidable challenge in view of the scarcity of environmentally suitable land. However, if most of the current palm that is diverted to biodiesel is switched to food use, about 3–4 Mha of this additional land would not be required.

Production issues

On the production or supply side, the oil palm sector faces several significant challenges that include new scientific advances, changing patterns of global trade and consumer sentiment, and the related issues of labour and mechanization. The efficiency and effectiveness of plantation management varies greatly across the sector, both among large commercial enterprises and individual smallholders. One of the most remarkable features of the oil palm is the stagnation in yields at values around or under 4 t/ha over the past two decades (Chandran 2019 ). As shown in Fig.  7 , this is in marked contrast to other major crops, including oilseeds, which have shown consistent yield increases in response to factors such as biological improvements, improved management and more efficient transport and supply chain infrastructure. In some cases, modelling analysis can provide new insights into plantation management that suggest possible improvements. A recent example is the application of model optimization and heuristic techniques that indicated significant potential for yield improvements by reducing the harvest cycle length from 19.6 to 8.3 days in a plantation in Columbia (Escallón-Barrios et al. 2020 ). Innovative new ideas for ‘smart’ oil palm mills have also been advanced (Isaac 2019 ) as well as the use of digital technologies, such as blockchain, to enhance the performance and transparency of supply chains (Keong 2019 ).

figure 7

Source: Ref. Chandran ( 2019 )

Stagnation of average oil yield (in tonnes per hectare) in Malaysian OP crops (right-hand axis) compared to two major competitor oilseeds, rapeseed and soybean (left-hand axis).

The oil palm cropping system is unusual in its continued reliance on large amounts of relatively unskilled manual labour that must operate in a humid and hot tropical climate on a year-round basis (Crowley 2020 ). During recent decades many plantations have increasingly relied on temporary migrant labour, but low wages and increasing incomes from alternative forms of employment have created staff shortages, which were greatly exacerbated by the COVID-19 pandemic (Crowley 2020 ; Raghu 2021 ). These problems have been compounded by allegations of poor labour practices in some plantations that led to the blacklisting of some of the largest commercial companies and import bans by the US Customs and Border Protection in 2020–21 (Jamal 2021 ).

In the long term, the most realistic solution to the current labour problems that plague the sector is to introduce more mechanization and shorter plants, as has been done for several other staple monocot and tree crops (Murphy 2011 ). One way of facilitating mechanization and increasing yield is to use modern molecular breeding approaches to modify crop architecture, for example to reduce trunk height as has been done with apples and major cereals such as wheat and rice (Murphy 2011 ; Nagai et al. 2020 ). Interestingly, a very recent study has identified three major QTLs associated with oil palm height on chromosome 11, which could facilitate the breeding of shorter and more compact palms for enhanced yield and ease of harvesting (Teh et al. 2020 ). Replanting of ageing and/or poorly performing palms is a vitally important strategy for improving the yield, and hence the overall sustainability and environmental footprint of oil palm crops. This applies to both large commercial growers and smallholders, many of whom use inferior seeds bought from middlemen with no record of their provenance. While there have been government initiatives in Malaysia and Indonesia, these efforts need to be redoubled and made more effective (Shehu et al. 2020 ; Yahya et al. 2020 ; Oosterveer 2020 ).

Sustainability and environmental challenges

The use of oil palm as a food ingredient in the large EU market has been in steady decline over the past decade (Fig.  6 ). There is little doubt that part of this decline has been due to adverse consumer sentiment about the oil palm industry in general and there are now discussions in the EU to require verifiable ‘point of origin’ declarations for all food-grade palm oil (Southey 2020 ). This could mean that any oil that cannot be reliably identified as from a sustainably certified source, such as RSPO, might not be imported into the EU. Clearly the industry needs to address these certification and authenticity issues in its supply chains to ensure that it becomes fully compliant with the requirements of its second largest customer, namely the EU.

The global oil palm industry is a major component of contemporary agriculture, supplying food to billions of people, plus a host of non-food products that include strategically vital cleaning products used in critical health care settings. However, there are well founded concerns about the expansion of oil palm plantations into sensitive habitats, such as highly biodiverse tropical forests and peatlands (Meijaard and Sheil 2019 ; Meijaard et al. 2018 ). There are no viable alternatives to oil palm in terms of its yield and delivery of a range of specific oils for human use (Parsons et al. 2020 ). It is therefore important to implement transparent and effective certification schemes right across the industry to guarantee that oil palm products can be labelled as being derived from environmentally sustainable and socially responsible sources. It is also important to recall that deforestation and habitat loss are also associated with the second most important global oil crop, soybean. Policymakers may therefore need to consider ways to reduce the demand for oils more specifically and for unhealthy ultra-processed foods more broadly. The industry also needs to redouble its efforts to engage with global consumers in a constructive dialogue aimed at addressing its image problem and explaining the many benefits of its products (Reardon et al. 2019 ; Borrello et al. 2020 ). Oil palm crops face many other challenges, including emerging threats from climate change and the likelihood of new pests and diseases, that require more effective international collaboration. The influential players in the industry need to interact with the key organizations and countries now fully committed to reducing climate change. Nevertheless, new breeding technologies are providing the promise of improvements in some areas, such as much higher yielding varieties, improved oil profiles, enhanced disease resistance and modified crop architecture to enable mechanization of fruit harvesting.

Availability of data and materials

Not applicable.

Abbreviations

  • Basal stem rot

Fresh fruit bunches

Greenhouse gas

Genetic manipulation (via transgenesis)

Genome-wide association studies

Identity preserved

Life cycle assessment (or analysis)

Million tonnes

Quantitative trait locus

Roundtable on sustainable palm oil

A quantum leap with genome select. Sime Darby; 2020. http://www.simedarbyplantation.com/sustainability/beliefs-progress/our-stories/a-quantum-leap-with-genome-select . Accessed 1 July 2020.

Arrieta F, Teixeira F, Yanez E, Lora E, Castillo E. Cogeneration potential in the Columbian palm oil industry: three case studies. Biomass Bioenerg. 2007;31(7):503–11.

Article   CAS   Google Scholar  

Ayompe L, Schaafsma M, Egoh BN. Towards sustainable palm oil production: the positive and negative impacts on ecosystem services and human wellbeing. J Clean Prod. 2021;278:123914.

Article   Google Scholar  

Babu KB, Rani MKL, Sahu S, Mathur RK, Kumar MP, Ravichandran G, et al. Development and validation of whole genome-wide and genic microsatellite markers in oil palm ( Elaeis guineensis Jacq.): first microsatellite database (OpSatdb). Sci Rep. 2019;9(1):1899.

Barcelos E, de Rios SA, Cunha RNV, Lopes R, Motoike SY, Babiychuk E, et al. Oil palm natural diversity and the potential for yield improvement. Front Plant Sci. 2015;6:190.

Article   PubMed   PubMed Central   Google Scholar  

Basal stem rot of oil palm. Plant wise; 2020. https://www.plantwise.org/knowledgebank/datasheet/24924 . Accessed 25 June 2021.

Basiron Y. Palm oil production through sustainable plantations. Eur J Lipid Sci Technol. 2007;109(4):289–95.

Blach-Overgaard A, Balslev H, Dransfield J, Normand S, Svenning J. Global-change vulnerability of a key plant resource, the African palms. Sci Rep. 2015;5(1):12611.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Bootman P. Estee Lauder announces sustainable palm oil project. Climate Action. 2021. https://www.climateaction.org/news/estee-lauder-announces-sustainable-palm-oil-project .

Borrello M, Annunziata A, Vecchio R. Sustainability of palm oil : drivers of consumers’ preferencesSustainability. 2020

Brooke C. Conservation and adaptation to climate change. Conserv Biol. 2008;22(6):1471–6.

Article   PubMed   Google Scholar  

Carlson KM, Curran LMLM, Asner GPGP, Pittman AM, Trigg SNSN, Marion Adeney J, et al. Carbon emissions from forest conversion by Kalimantan oil palm plantations. Nat Clim Chang. 2012;3(3):283–7.

Carlson KM, Heilmayr R, Gibbs HK, Noojipady P, Burns DN, Morton DC, et al. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc Natl Acad Sci. 2018;115(1):121–6.

Article   CAS   PubMed   Google Scholar  

Catalán P, Elena SF, Cuesta JA, Manrubia S. Parsimonious scenario for the emergence of viroid-like replicons De Novo. Viruses. 2019;11(5):425.

Article   PubMed Central   CAS   Google Scholar  

Caudwell RW, Orrell I. Integrated pest management for oil palm in Papua New Guinea. Integr Pest Manag Rev. 1997;2:17–24.

Chandran MR. Future viability and sustainability of plantation crops. Malay Oil Sci Technol. 2019;28:56–60.

Google Scholar  

Chase LDC, Henson IE, Abdul-Manan AFN, Agus F, Bessou C, Milà i Canals L, Sharma M (2012) The PalmGHG Calculator: The RSPO greenhouse gas calculator for oil palm products, Beta-version. The Roundtable for Sustainable Palm Oil – RSPO; 2012. http://www.rspo.org/file/RSPO_PalmGHG%20Beta%20version%201.pdf .

Chowdhury R, Warnakula S, Kunutsor S, Crowe F, Ward HA, Johnson L, et al. Association of dietary, circulating, and supplement fatty acids with coronary risk. Ann Intern Med. 2014;160(6):398.

Cochard B, Amblard P, Durand-Gasselin T. Oil palm genetic improvement and sustainable development. Oléagineux Corps Gras Lipides. 2005;12(2):141–7.

Coconut cadang-cadang viroid (cadang cadang disease). CABI; 2020. https://www.cabi.org/isc/datasheet/13700 . Accessed 1 July 2020.

Comeau L, Hergoualc’h K, Hartill J, Smith J, Verchot L, Peak D, et al. How do the heterotrophic and the total soil respiration of an oil palm plantation on peat respond to nitrogen fertilizer application? Geoderma. 2016;268:41–51.

Cook S. Fluvial organic carbon losses from tropical peatland oil palm plantations in Sarawak, Malaysia. University of Leicester; 2018. https://peatlands.org/document/fluvial-organic-carbon-losses-from-oil-palm-plantations-on-tropical-peat-sarawak-southeast-asia/ .

Corley RHV, Tinker PB. The oil palm. Chichester: Wiley Blackwell; 2015.

Book   Google Scholar  

Cosiaux A, Gardiner LM, Stauffer FW, Bachman SP, Sonké B, Baker WJ, et al. Low extinction risk for an important plant resource: conservation assessments of continental African palms ( Arecaceae/Palmae ). Biol Conserv. 2018;221:323–33.

Costa J, Mafra I, Oliveira MPBPP. Advances in vegetable oil authentication by DNA-based markers. Trends Food Sci Technol. 2012;26(1):43–55.

Crowley M. Foreign labor shortages in the malaysian palm oil industry: impacts and recommendations. Asian J Agric Dev. 2020;17:1–18.

Dalal R, Shanmugam S. Consulting study 6: practical guidance on how to estimate soil carbon stocks and soil greenhouse gas emissions following tropical forest conversion on mineral soil. Area. 2015;9434(407):9436.

Daval A, Pomiès V, Le Squin S, Denis M, Riou V, Breton F, et al. In silico mapping in an oil palm breeding program reveals a quantitative and complex genetic resistance to Ganoderma boninense . Mol Breed. 2021;41:1–8.

Descals A, Wich S, Meijaard E, Gaveau D, Peedell S, Szantoi Z. High-resolution global map of smallholder and industrial closed-canopy oil palm plantations. Earth Syst Sci Data Discuss. 2020;13:1–22.

Dislich C, Keyel AC, Salecker J, Kisel Y, Meyer KM, Auliya M, et al. A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biol Rev. 2017;92(3):1539–69.

Escallón-Barrios M, Castillo-Gomez D, Leal J, Montenegro C, Medaglia AL. Improving harvesting operations in an oil palm plantation. Annals of operations research. Berlin: Springer, US; 2020. https://doi.org/10.1007/s10479-020-03686-6 .

Euler M, Schwarze S, Siregar H, Qaim M. Oil Palm Expansion among smallholder farmers in Sumatra, Indonesia. J Agric Econ. 2016;67(3):658–76.

Euler M, Krishna V, Schwarze S, Siregar H, Qaim M. Oil palm adoption, household welfare, and nutrition among smallholder farmers in Indonesia. World Dev. 2017;93:219–35.

Feeley KJ, Stroud JT, Perez TM. Most ‘global’ reviews of species’ responses to climate change are not truly global. Divers Distrib. 2017;23(3):231–4.

Fei S, Desprez JM, Potter KM, Jo I, Knott JA, Oswalt CM. Divergence of species responses to climate change. Sci Adv. 2017;3(5):e1603055.

Fitzherbert E, Struebig M, Morel A, Danielsen F, Bruhl C, Donald P, et al. How will oil palm expansion affect biodiversity? Trends Ecol Evol. 2008;23(10):538–45.

Frost and Sullivan. The European, the Middle East and African oils & fats market for food applications, forecast to 2021. Global Food Ingredients Database Series; 2017. https://store.frost.com/the-european-the-middle-east-and-african-oils-fats-market-for-food-applications-forecast-to-2021.html . Accessed 7 July 2020.

Furumo P, Rueda X, Rodríguez J, Parés RI. Field evidence for positive certification outcomes on oil palm smallholder management practices in Colombia. J Clean Prod. 2020;245:118891.

Gaveau DLA, Sloan S, Molidena E, Yaen H, Sheil D, Abram NK, et al. Four decades of forest persistence, clearance and logging on borneo. PLoS ONE. 2014;9(7):e101654.

Article   PubMed   PubMed Central   CAS   Google Scholar  

Gaveau DLA, Sheil D, Salim MA, Arjasakusuma S, Ancrenaz M, Pacheco P, et al. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Nat Publ Gr. 2016. https://doi.org/10.1038/srep32017 .

Ghini R, Bettiol W, Hamada E. Diseases in tropical and plantation crops as affected by climate changes: current knowledge and perspectives. Plant Pathol. 2011;60(1):122–32.

Goggin KA, Murphy DJ. Monitoring the traceability, safety and authenticity of imported palm oils in Europe. OCL. 2018;25(6):A603.

Govender N, Mui-Yun W, Paterson RRM. Opportunities for new-generation Ganoderma boninense biotechnology. In: Grand challenges in fungal biotechnology. Cham: Springer; 2020. p. 477–500. https://doi.org/10.1007/978-3-030-29541-7_17 .

Chapter   Google Scholar  

Gunarso P, Hartoyo ME, Agus F, Killeen TJ. Oil palm and land use change in Indonesia, Malaysia and Papua New Guinea. Reports from tech panels RSPOs 2nd Greenh Gas Work Gr; 2013. p. 29–64.

Hambloch C. The Tropical Oil Crop Revolution: Food, Feed, Fuel, and Forests, by Derek Byerlee, Walter P. Falcon, and Rosamond L. Naylor. New York: Oxford University Press, 2017. Pp. vii + 288. £56 (hb). ISBN: 9780190222987. J Agrar Chang. 2018;18(3):697–700.

Harris NL, Brown K, Netzer M, Gunarso P, Killeen TJ. Projections of oil palm expansion in Indonesia, Malaysia and Papua New Guinea from 2010–2050. In: Killeen TJ, editor. Reports from the science panel of the second RSPO GHG working group. Kuala Lumpur: RSPO; 2013. p. 1–27. https://www.researchgate.net/publication/320024842_Projections_of_oil_palm_expansion_in_Indonesia_Malaysia_and_Papua_New_Guinea_from_2010_to_2050 .

Herrero J, Santika B, Herrán A, Erika P, Sarimana U, Wendra F, et al. Construction of a high density linkage map in Oil Palm using SPET markers. Sci Rep. 2020;10(1):9998.

Ho CL, Tan YC, Yeoh KA, Ghazali AK, Yee WY, Hoh CC. De novo transcriptome analyses of host-fungal interactions in oil palm ( Elaeis guineensis Jacq.). BMC Genomics. 2016;17(1):1–19.

Indexmundi. Palm kernel meal exports by country in 1000 MT. 2021. https://www.indexmundi.com/agriculture/?commodity=palm-kernel-meal&graph=exports . Accessed 5 Feb 2021.

Indonesia: Palm oil expansion unaffected by Forest Moratorium. USDA; 2013. https://ipad.fas.usda.gov/highlights/2013/06/indonesia/ . Accessed 1 July 2020.

Isaac J. Industrial revolution 4.0 for smart oil palm mills. Malaysian Oil Sci Technol. 2019;28:28–36.

Ithnin M, Vu WT, Shin MG, Suryawanshi V, Sherbina K, Zolkafli SH, et al. Genomic diversity and genome-wide association analysis related to yield and fatty acid composition of wild American oil palm. Plant Sci. 2020. https://doi.org/10.1016/j.plantsci.2020.110731 .

Jackson TA. Learning to Love the World’s Most Hated Crop. J Oil Palm Res. 2019;31(3):331–47.

Jamal U. US ban on palm oil from Malaysia’s Sime Darby shows abuses are now common knowledge. Asean Today; 2021. https://www.aseantoday.com/2021/01/us-ban-on-palm-oil-from-malaysias-sime-darby-shows-abuses-are-now-common-knowledge/ . Accessed 25 June 2021.

Kadandale S, Marten R, Smith R. The palm oil industry and noncommunicable diseases. Bull World Health Organ. 2019;97(2):118–28.

Kalidas P. Pest problems of oil palm and management strategies for sustainability. Agrotechnology. 2013; 01(S11). https://www.omicsgroup.org/journals/pest-problems-of-oil-palm-and-management-strategies-for-sustainability-2168-9881.S11-002.php?aid=10880

Keong NW. Modernising sales and widening markets. Malaysian Oil Sci Technol. 2019;28:32–6.

Koh LP, Wilcove DS. Is oil palm agriculture really destroying tropical biodiversity? Conserv Lett. 2008;1(2):60–4.

Krishna V, Euler M, Siregar H, Qaim M. Differential livelihood impacts of oil palm expansion in Indonesia. Agric Econ. 2017;48(5):639–53.

Kubitza C, Krishna VV, Alamsyah Z, Qaim M. The economics behind an ecological crisis: livelihood effects of oil palm expansion in Sumatra, Indonesia. Hum Ecol. 2018;46(1):107–16.

Lee JSH, Abood S, Ghazoul J, Barus B, Obidzinski K, Koh LP. Environmental impacts of large-scale oil palm enterprises exceed that of smallholdings in Indonesia. Conserv Lett. 2014;7(1):25–33.

Lenoir J, Svenning J-C. Climate-related range shifts - a global multidimensional synthesis and new research directions. Ecography (cop). 2015;38(1):15–28.

Lobell DB, Field CB, Cahill KN, Bonfils C. Impacts of future climate change on California perennial crop yields: Model projections with climate and crop uncertainties. Agric for Meteorol. 2006;141(2–4):208–18.

Lyons-White J, Knight AT. Palm oil supply chain complexity impedes implementation of corporate no-deforestation commitments. Glob Environ Chang. 2018;50:303–13.

Malaysian palm oil production by year. Indexmundi; 2020. https://www.indexmundi.com/agriculture/?country=my&commodity=palm-oil&graph=production . Accessed 1 July 2020.

May-Tobin C, Boucher D, Decker E, Hurowitz G, Martyn J, Mulik K, et al. Recipes for success: solutions for deforestation-free vegetable oils; 2012. https://www.ucsusa.org/resources/recipes-success

Meijaard E, Garcia-Ulloa J, Sheil D, Wich SA, Carlson KM, Juffe-Bignoli D, et al. Oil palm and biodiversity: a situation analysis by the IUCN oil palm task force. In: Meijaard E, Garcia-Ulloa J, Sheil D, Carlson KM, Wich SA, Juffe-Bignoli D, et al. editors. IUCN, International Union for Conservation of Nature; 2018. p. 1–115. https://portals.iucn.org/library/node/47753 .

Meijaard E, Sheil D. The moral minefield of ethical oil palm and sustainable development. Front Glob Change. 2019. https://doi.org/10.3389/ffgc.2019.00022 .

Meijaard E, Brooks TM, Carlson KM, Slade EM, Garcia-Ulloa J, Gaveau DLA, et al. The environmental impacts of palm oil in context. Nat Plants. 2020;6(12):1418–26.

Mercière M, Boulord R, Carasco-Lacombe C, Klopp C, Lee Y-P, Tan J-S, et al. About Ganoderma boninense in oil palm plantations of Sumatra and peninsular Malaysia: ancient population expansion, extensive gene flow and large scale dispersion ability. Fungal Biol. 2017;121(6–7):529–40.

Mohamed Azni INA, Sundram S, Ramachandran V. Pathogenicity of Malaysian Phytophthora palmivora on cocoa, durian, rubber and oil palm determines the threat of bud rot disease. For Pathol. 2019;49(6):e12557.

Murphy DJ. Plants, biotechnology and agriculture. Oxford: CABI Publishing; 2011.

Murphy DJ. The future of oil palm as a major global crop: opportunities and challenges. J Oil Palm Res. 2014;26:1–24.

Murphy DJ. What is the future for oil palm as a global crop? World Agric. 2015;5:24–34.

Murphy D. Oil palm value chain management. In: Allan T, Bromwich B, Keulertz M, Colman A, editors. The oxford handbook of food, water and society. Oxford: Oxford University Press; 2019. p. 630–51.

Muzii N. Almost two-thirds of palm oil consumed in the EU is burned as energy- new data. Transport and Environment; 2019. https://www.transportenvironment.org/press/almost-two-thirds-palm-oil-consumed-eu-burned-energy-new-data . Accessed 1 July 2020.

Nagai K, Mori Y, Ishikawa S, Furuta T, Gamuyao R, Niimi Y, et al. Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature. 2020. https://doi.org/10.1038/s41586-020-2501-8 .

Nahum JS, de Santos LS, dos Santos CB. Formation of palm oil cultivation inn para’s amazon. Mercator. 2020;19(3):1–14.

Nyouma A, Bell JM, Jacob F, Cros D. From mass selection to genomic selection: one century of breeding for quantitative yield components of oil palm ( Elaeis guineensis Jacq.). Tree Genet Genomes. 2019;15(5):69.

Ohimain EI, Izah SC. Energy self-sufficiency of smallholder oil palm processing in Nigeria. Renew Energy. 2014;63:426–31.

Okolo CC, Okolo EC, Nnadi AL, Obikwelu FE, Obalum SE, Igwe CA. The oil palm ( Elaeis guineensis Jacq): nature’s ecological endowment to eastern Nigeria. Agro-Science. 2019;18(3):48.

Ong A-L, Teh C-K, Kwong Q-B, Tangaya P, Appleton DR, Massawe F, et al. Linkage-based genome assembly improvement of oil palm ( Elaeis guineensis ). Sci Rep. 2019;9(1):6619.

Oosterveer P. Sustainability of palm oil and it’s acceptance in the EU. J Oil Palm Res. 2020;32(3):365–76.

Osorio-Guarín JA, Garzón-Martínez GA, Delgadillo-Duran P, Bastidas S, Moreno LP, Enciso-Rodríguez FE, et al. Genome-wide association study (GWAS) for morphological and yield-related traits in an oil palm hybrid ( Elaeis oleifera x Elaeis guineensis ) population. BMC Plant Biol. 2019;19(1):533.

Parsons S, Raikova S, Chuck CJ. The viability and desirability of replacing palm oil. Nat Sustain. 2020;3(6):412–8.

Paterson RRM. Ganoderma boninense disease deduced from simulation modelling with large data sets of future Malaysian oil palm climate. Phytoparasitica. 2019a;47(2):255–62.

Paterson RM. Ganoderma boninense disease of oil palm is expected to significantly reduce production after in if projected climate change occurs. Microorganisms. 2019b;7:24.

Article   PubMed Central   Google Scholar  

Paterson RRM. Future scenarios for oil palm mortality and infection by Phytophthora palmivora in Colombia, Ecuador and Brazil, extrapolated to Malaysia and Indonesia. Phytoparasitica. 2020a;48(4):513–23.

Paterson RRM. Oil palm survival under climate change in Kalimantan and alternative SE Asian palm oil countries with future basal stem rot assessments. For Pathol. 2020b;50:e12604.

Paterson RRM. Oil palm survival under climate change in Malaysia with future basal stem rot assessments. For Pathol. 2020c;50(6):1–8.

Paterson RRM. Depletion of Indonesian oil palm plantations implied from modeling oil palm mortality and Ganoderma boninense rot under future climate. AIMS Environ Sci. 2020d;7(5):366–79.

Paterson RRM. Longitudinal trends of future climate change and oil palm growth: empirical evidence for tropical Africa. Environ Sci Pollut Res. 2021a. https://doi.org/10.1007/s11356-020-12072-5 .

Paterson RRM. Modelling longitudinal trends to oil palm refuges and oil palm mortalities in South America under future climate. SF J Agric Crop Manag; 2021b;2:1011.

Paterson RRM. Longitudinal trends of future suitable climate for conserving oil palm indicates refuges in tropical south-east Asia with comparisons to Africa and South America. Pacific Conserv Biol; 2021c; http://www.publish.csiro.au/?paper=PC20067 . Accessed Oct 2021.

Paterson RRM. Optimised and systematic suitable climate modelling confirms future longitudinal-trends for growing oil palm in Africa. J. Environ. Manag; 2021d;300:113785. https://doi.org/10.1016/j.jenvman.2021.113785

Paterson RRM. Future scenarios for Fusarium wilt disease and mortality of oil palm in Nigeria, Ghana and Cameroon, extrapolated to Malaysia and Indonesia. Eur. J. Plant Pathol. (2021e In Press). https://doi.org/10.1007/s10658-021-02389-3 . 

Paterson RRM, Lima N. Climate change affecting oil palm agronomy, and oil palm cultivation increasing climate change, require amelioration. Ecol Evol. 2018;8(1):452–61.

Paterson RRM, Kumar L, Taylor S, Lima N. Future climate effects on suitability for growth of oil palms in Malaysia and Indonesia. Sci Rep. 2015;5(1):14457.

Paterson RRM, Kumar L, Shabani F, Lima N. World climate suitability projections to 2050 and 2100 for growing oil palm. J Agric Sci. 2017;155(5):689–702.

Pirker J, Mosnier A, Kraxner F, Havlík P, Obersteiner M. What are the limits to oil palm expansion? Glob Environ Chang. 2016;40:73–81.

Pornsuriya C, Sunpapao A, Srihanant N, Worapattam K, Kittimorak J, Phithakkit S, et al. A survey of diseases and disorders in oil palms of Southern Thailand. Plant Pathol J. 2013;12(4):169–75.

Raghu A. Palm oil outputs at risk as virus lockdown worsens labor shortage. Bloomberg. 2021. https://www.bloomberg.com/news/articles/2021-06-14/palm-oil-output-at-risk-as-virus-lockdown-worsens-labor-shortage . Accessed 25 June 2021.

Rahutomo S. BMP’s for facing drought stress onn oil palm; 2016. http://www.iopri.org/wp-content/uploads/2016/09/ISOPA-Paper-I.pdf .

Rajanaidu N, Ainul M, Kushairi A. Historical review of oil palm breeding journey for the past 50 years- Malaysian journey. In: Proceedings of international seminar oil palm Breed; 2014. http://isopb.mpob.gov.my/pdfFile/7th/Paper1HISTORICALREVIEWFOROILPALMBREEDINGFORTHEPAS.pdf .

Ramle M, Wahid MB, Norman K, Glare TR, Jackson TA. The incidence and use of Oryctes virus for control of rhinoceros beetle in oil palm plantations in Malaysia. J Invertebr Pathol. 2005;89(1):85–90.

Razak SA, Saadun N, Azhar BMB, Lindenmayer DDB. Smallholdings with high oil palm yield also support high bird species richness and diverse feeding guilds. Environ Res Lett. 2020;15(9):094031.

Reardon K, Padfield R, Salim HK. “Consumers don’t see tigers dying in palm oil plantations”: a cross-cultural comparative study of UK, Malaysian and Singaporean consumer views of palm oil. Asian Geogr. 2019;36(2):117–41.

Reddy MT, Kalpana M, Sivaraj N, Kamala V, Pandravada SR, Sunil N. Indigenous traditional knowledge on health and equitable benefits of oil palm ( Elaeis spp.). Open Access Libr J. 2019;06(01):1–25.

CAS   Google Scholar  

Rival A. Breeding the oil palm ( Elaeis guineensis Jacq.) for climate change. OCL. 2017;24(1):D107.

Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, et al. Attributing physical and biological impacts to anthropogenic climate change. Nature. 2008;453(7193):353–7.

RSPO. RSPO supply chain certification systems; 2009. https://rspo.org/publications/download/e93ae07bdabafb2 .

RSPO. BASF, The estee lauder companies, RSPO and solidaridad partner for sustainable palm oil project. RSEP; 2021. https://rsep.rspo.org/index.php/dialogue/item/basf-the-estee-lauder-companies-rspo-and-solidaridad-partner-for-sustainable-palm-project . Accessed 25 June 2021.

RSPO Supply Chains. RSPO; 2017. http://www.rspo.org/certification/supply-chains . Accessed 19 June 2017.

Rusli MH. Disease Epidemiology and Genetic Diversity of Fusarium oxysporum f. sp. elaeidis, dause of Fusarium wilt of oil palm ( Elaeis guineensis Jacq.). J Oil Palm Res. 2017;22(29):548–61.

Rusli MH, Idris AS, Cooper RM. Evaluation of Malaysian oil palm progenies for susceptibility, resistance or tolerance to Fusarium oxysporum f. sp. elaeidis and defence-related gene expression in roots. Plant Pathol. 2015;64(3):638–47.

Samedani B, Juraimi AS, Rafii MY, Sheikh Awadz SA, Anwar MP, Anuar AR. Effect of cover crops on weed suppression in oil palm plantation. Int J Agric Biol. 2015;17(2):251–60.

Santika T, Wilson K, Law E, St John F, Carlson K, Gibbs H, et al. Impact of palm oil sustainability certification on village well-being and poverty in Indonesia. Nat Sustain. 2021;4(2):109–19.

Sarkar MSK, Begum RA, Pereira JJ. Impacts of climate change on oil palm production in Malaysia. Environ Sci Pollut Res. 2020;27(9):9760–70.

Schmidt JH. Life cycle assessment of five vegetable oils. J Clean Prod. 2015;87(C):130–8.

Schoneveld G, van der Haar S, Ekowati D, Andrianto A, Komarudin H, Okarda B, et al. Certification, good agricultural practice and smallholder heterogeneity: differentiated pathways for resolving compliance gaps in the Indonesian oil palm sector. Glob Environ Chang. 2019;57:101933.

Scriven SA, Hodgson JA, McClean CJ, Hill JK. Protected areas in Borneo may fail to conserve tropical forest biodiversity under climate change. Biol Conserv. 2015;184:414–23.

Scriven SA, Carlson KM, Hodgson JA, McClean CJ, Heilmayr R, Lucey JM, et al. Testing the benefits of conservation set-asides for improved habitat connectivity in tropical agricultural landscapes. J Appl Ecol. 2019;56(10):2274–85.

Shabani F, Kumar L, Taylor S. Climate change impacts on the future distribution of date palms: a modeling exercise using CLIMEX. PLoS ONE. 2012;7(10):e48021. https://doi.org/10.1371/journal.pone.0048021 .

Shehu S, Salleh MA, Ayoade AA. The sustainable palm oil policies in Malaysia. J Manag Theory Pract. 2020;3:56–60.

Singh R, Ong-Abdullah M, Low ETL, Manaf MAA, Rosli R, Nookiah R, et al. Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds. Nature. 2013;500(7462):335–9.

Somnuek S, Slingerland MMA, Grünbühel CM. The introduction of oil palm in Northeast Thailand: a new cash crop for smallholders? Asia Pac Viewp. 2016;57(1):76–90.

Southey F. Enforcing sustainability in palm oil: what would mandatory due diligence look like?. Food Navigator; 2020. https://www.foodnavigator.com/Article/2020/06/08/Enforcing-sustainability-in-palm-oil-What-would-mandatory-due-diligence-look-like . Accessed 1 July 2020.

Statisa. Production of major vegetable oils worldwide from 2019/2020. Statista. 2020. https://www.statista.com/statistics/263933/production-of-vegetable-oils-worldwide-since-2000/ . Accessed 7 July 2020.

Statista. Leading producers of palm oil worldwide from 2012/13 to 2019/20. Statista. 2020. https://www.statista.com/statistics/856231/palm-oil-top-global-producers/ . Accessed 7 July 2020.

Suryantini R, Wilandari RS. Diversity of Ganoderma pathogen in Pontianak, West Kalimantan: Characteristics, virulence and ability to infect Acacia mangium seedlings. Biodiversitas J Biol Divers. 2018;19(2):465–71.

Tang KHD. Climate change in Malaysia: trends, contributors, impacts, mitigation and adaptations. Sci Total Environ. 2019;650:1858–71.

Teh C-K, Ong A-L, Mayes S, Massawe F, Appleton DR. Major QTLs for trunk height and correlated agronomic traits provide insights into multiple trait integration in oil palm breeding. Genes (basel). 2020;11(7):826.

Ting N-C, Mayes S, Massawe F, Sambanthamurthi R, Jansen J, Syed Alwee SSR, et al. Putative regulatory candidate genes for QTL linked to fruit traits in oil palm ( Elaeis guineensis Jacq). Euphytica. 2018;214(11):214.

Tonks AJAJ, Aplin P, Beriro DJDJ, Cooper H, Evers S, Vane CHCH, et al. Impacts of conversion of tropical peat swamp forest to oil palm plantation on peat: organic chemistry, physical properties and carbon stocks. Geoderma. 2017;289:36–45.

USDA. El Nino drought reduces 2015/16 corn prospects in South Africa. USDA; 2016. https://ipad.fas.usda.gov/highlights/2016/05/SouthAfricaElNino/index.htm . Accessed 1 July 2020.

Veloo R, Van Ranst E, Selliah P. Peat Characteristics and its impact on oil palm yield. NJAS Wageningen J Life Sci. 2015;72:33–40.

Villela AA, Jaccoud DB, Rosa LP, Freitas MV. Status and prospects of oil palm in the Brazilian Amazon. Biomass Bioenerg. 2014;67:270–8.

Wich SA, Gaveau D, Abram N, Ancrenaz M, Baccini A, Brend S, et al. Understanding the impacts of land-use policies on a threatened species: is there a future for the Bornean Orang-utan? PLoS ONE. 2012;7(11):1–10.

Wicke B, Sikkema R, Dornburg V, Faaij A. Exploring land use changes and the role of palm oil production in Indonesia and Malaysia. Land Use Policy. 2011;28(1):193–206.

Wong MY, Govender NT, Ong CS. RNA-seq data of Ganoderma boninense at axenic culture condition and under in planta pathogen-oil palm ( Elaeis guineensis Jacq.) interaction. BMC Res Notes. 2019;12(1):10–2.

Woods K. Forest trade and finance March 2015 commercial agriculture expansion in Myanmar: links to deforestation, conversion timber , and land conflicts; 2015. https://www.forest-trends.org/wp-content/uploads/2015/03/Conversion_Timber_in_Myanmar-1.pdf .

Xia W, Luo T, Dou Y, Zhang W, Mason AS, Huang D, et al. Identification and validation of candidate genes involved in fatty acid content in oil palm by genome-wide association analysis. Front Plant Sci. 2019;10:1263.

Xu Y, Yu L, Li W, Ciais P, Cheng Y, Gong P. Annual oil palm plantation maps in Malaysia and Indonesia from 2001 to 2016. Earth Syst Sci Data. 2020;12(2):847–67.

Yahya SNA, Abdullah N, Ludin NA, Yuzir A, Mohamad SE, Koji I. Environmental sustainability assessment approach for palm oil production in Malaysia. J Environ Treat Tech. 2020;8(3):1046–53.

Yarra R, Cao H, Jin L, Mengdi Y, Zhou L. CRISPR/Cas mediated base editing: a practical approach for genome editing in oil palm. 3 Biotech. 2020;10(7):306.

Yee KF, Tan KT, Abdullah AZ, Lee KT. Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Appl Energy. 2009;86(SUPPL. 1):S189–96.

Download references

Acknowledgements

Author information, authors and affiliations.

School of Applied Sciences, University of South Wales, Pontypridd, CF37 4AT, UK

Denis J. Murphy & Kirstie Goggin

School of Pharmacy and Pharmaceutical Sciences, University of Cardiff, CF10 3NB, Cardiff, UK

Kirstie Goggin

CEB-Centre of Biological Engineering, Gualtar Campus, University of Minho, 4710-057, Braga, Portugal

R. Russell M. Paterson

Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor D.E., Malaysia

You can also search for this author in PubMed   Google Scholar

Contributions

All authors contributed to researching and writing the article which was coordinated by DM. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Denis J. Murphy .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Murphy, D.J., Goggin, K. & Paterson, R.R.M. Oil palm in the 2020s and beyond: challenges and solutions. CABI Agric Biosci 2 , 39 (2021). https://doi.org/10.1186/s43170-021-00058-3

Download citation

Received : 14 August 2020

Accepted : 15 September 2021

Published : 11 October 2021

DOI : https://doi.org/10.1186/s43170-021-00058-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Sustainability
  • Phytophthora
  • Climate change

CABI Agriculture and Bioscience

ISSN: 2662-4044

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

palm kernel oil business plan

TheJakartaPost

Please Update your browser

Your browser is out of date, and may not be compatible with our website. A list of the most popular web browsers can be found below. Just click on the icons to get to the download page.

  • Destinations
  • Jakpost Guide to
  • Newsletter New
  • Mobile Apps
  • Tenggara Strategics
  • B/NDL Studios

TJP Logo

  • Archipelago
  • Election 2024
  • Regulations
  • Asia & Pacific
  • Middle East & Africa
  • Entertainment
  • Arts & Culture
  • Environment
  • Work it Right
  • Quick Dispatch
  • Longform Biz

Indonesia lowers palm oil levy to boost exports

Indonesia rolled out a new rule on Thursday that imposes a 7.5 percent levy on CPO exports to increase the commodity's global competitiveness amid declining demand relative to other vegetable oils.

Share this article

Change text size, gift premium articles to anyone.

Indonesia lowers palm oil levy to boost exports

he government is poised to introduce a new rule that lowers levies on palm oil exports, in a bid to increase the key commodity’s competitiveness against rival edible oils in the global market.

The Finance Ministry plans to impose a levy amounting to 7.5 percent of the reference price for crude palm oil (CPO) exports, effective three days after the new rule's introduction on Sept. 19.

The new rule cuts the levy on CPO exports from US$90 to $63 per tonne.

The export levy for both palm kernel and palm kernel meal is set at $25 per tonne, while lower levies ranging 3-6 percent of the country’s CPO reference prices apply to more refined palm oil products, according to the regulation posted in the Finance Ministry's website.

Indonesia charges export tax and additional levies on CPO, with the reference rate calculated using a weighted average of palm oil prices as set by the Trade Ministry.

The CPO reference rate is set on a monthly basis in United States dollars.

palm kernel oil business plan

Every Monday

With exclusive interviews and in-depth coverage of the region's most pressing business issues, "Prospects" is the go-to source for staying ahead of the curve in Indonesia's rapidly evolving business landscape.

By registering, you agree with The Jakarta Post 's Privacy Policy

for signing up our newsletter!

Please check your email for your newsletter subscription.

The levies on CPO exports are crucial for funding Indonesia's palm oil initiatives, such as smallholder replanting programs and the subsidized biodiesel program.

‘I am impressed’, Prabowo praises Marcos during Manila visit

‘I am impressed’, Prabowo praises Marcos during Manila visit

Possible player strike over workload a serious concern, says Dortmund's Sahin

Possible player strike over workload a serious concern, says Dortmund's Sahin

Court limits screenings of videos in France mass rape case

Court limits screenings of videos in France mass rape case

Related articles, addressing gaps in indonesia’s national commodity dashboard and eudr, eu embargo on indonesian palm oil a blessing in disguise, prabowo says, integrated palm oil industry practices: lessons from sei mangkei sez, attracting institutional investors by modernizing reits, no broad commodities boom seen for this year, related article, more in business.

Floating power: This aerial photo shows a 192-megawatt floating solar power plant at the Cirata Reservoir in West Java. President Joko “Jokowi” Widodo inaugurated the plant on Nov. 9, 2023.

Indonesia far short of 2024 renewable energy target

palm kernel oil business plan

US to propose ban on Chinese software, hardware in connected vehicles

Big tech: A man passes by a Google sign at the company’s stand during the annual meeting of the World Economic Forum in Davos on Jan. 21, 2020. The world’s largest economies have agreed on a mechanism to ensure that multinational enterprises pay an agreed-upon minimum tax.

French media sue Google for $1.1 billion over advertising

New Zealand pilot Philip Mehrtens read a statement prepared by a group of separatists in Papua on March 10, 2023.

Papua armed group releases New Zealand pilot from captivity: Police

Dancers perform on stage during the closing ceremony of the 2024 National Games (PON) at the North Sumatra Main Stadium in Deli Serdang, North Sumatra, on Sept. 20, 2024. The ceremony marked the end of the 21st PON, jointly hosted by North Sumatra and Aceh, with the next edition to be held in West Nusa Tenggara (NTB) and East Nusa Tenggara (NTT) in 2028.

Valuing the National Games

Philippine President Ferdinand Marcos Jr (left) walks with Defense Minister and president-elect Prabowo Subianto during the latter's visit to Malacanang Palace in Manila on Sept. 20, 2024.

KPU announces candidates for regional elections

Pro-prabowo parties united behind plan to install professionals in cabinet, relief as new zealand pilot freed from captivity in papua, netherlands inks new deal to return indonesian artifacts, missing travel ban from law revision raises concern, us urges citizens to leave lebanon while commercial options available.

The Jakarta Post

  • Jakpost Guide To
  • Art & Culture
  • Today's Paper
  • Southeast Asia
  • Cyber Media Guidelines
  • Paper Subscription
  • Privacy Policy
  • Discussion Guideline
  • Term of Use

© 2016 - 2024 PT. Bina Media Tenggara

to Read Full Story

Subscribe now.

  • Unlimited access to our web and app content
  • e-Post daily digital newspaper
  • No advertisements, no interruptions
  • Privileged access to our events and programs
  • Subscription to our newsletters

Purchase access to this article for

TJP - GoPay

Redirecting you to payment page

Pay per article.

palm kernel oil business plan

Rp 29,000 / article

Or continue login with

  • Palmerat Barat No. 142-143
  • Central Jakarta
  • DKI Jakarta
  • +6283816779933

palm kernel oil business plan

Your Opinion Matters

Share your experiences, suggestions, and any issues you've encountered on The Jakarta Post. We're here to listen.

Thank you for sharing your thoughts. We appreciate your feedback.

Share options

Quickly share this news with your network—keep everyone informed with just a single click!

Change text size options

Customize your reading experience by adjusting the text size to small, medium, or large—find what’s most comfortable for you.

Share the best of The Jakarta Post with friends, family, or colleagues. As a subscriber, you can gift 3 to 5 articles each month that anyone can read—no subscription needed!

COMMENTS

  1. Palm Kernel Oil Business Plan [Sample Template]

    Purchase of truck for palm kernel oil distribution - $50,000. Raw materials (palm kernel nuts) and packaging materials - $20,000. Marketing budget and promotion expenses for the launching of Henai Palm Kernel Oil Inc. as well as for a running period of six months - $10,000. Cost of hiring business consultant - $3,000.

  2. Palm Kernel Oil Production Business Plan Template

    1. Food Industry: The food industry is one of the primary consumers of palm kernel oil. It is used in the production of snacks, baked goods, confectioneries, and cooking oil. Manufacturers of these products, such as bakeries, snack food companies, and food processing units, are potential customers for palm kernel oil production businesses. 2.

  3. Starting a Palm Kernel Oil Extraction Company

    A palm kernel production business will require between N5,000,000 and N10,000,000 (between $30,000 and $60,000) depending on the size of your business, your chosen location, and many other factors. You will need about N750,000 (about $5,000) to cover startup expenses, which include the rent for at least 3 years, business registration and agency ...

  4. PALM KERNEL OIL PRODUCTION IN NIGERIA, THE BUSINESS PLAN

    Palm Kernel trees which bear the nuts are indigenous to the Southern part of Nigeria. They are particularly the main stay of the economy of the people of the old Eastern Nigeria, Benue and Kogi States. Palm Kernel nuts are oil bearing seeds. They contain between 40% and 48% of oil, 55% and 47% of cake and 5% of sludge and debris.

  5. How To Start Palm Kernel Oil Production Business

    Organization & Management. The quality of organization, as well as management, determines the success of your palm kernel oil production business. You'll unveil your company's organizational structure with a focus on the key departments, employees, owners, as well as profiles of your management team. vii. Financial Plan & Projections.

  6. A Step-by-Step Guide Start a Palm Oil Production Business

    The steamer softens oil palm fruits, facilitating the release of natural oil. Post-steam treatment, the fruit masses, containing water, oil, fibers, and palm kernel, undergo a meticulous separation process. High-Pressure Extraction. Under high pressure, the natural fruit yields a water-oil mixture.

  7. How to write a business plan for a palm oil producer?

    Lastly, address any funding needs in the "ask" section of your executive summary. 2. The presentation of the company. As you build your palm oil producer business plan, the second section deserves attention as it delves into the structure and ownership, location, and management team of your company.

  8. Starting a Palm Oil Processing Company

    This is best because there should be high level of hygiene around your plant. 2. Get the necessary equipment. In the past, palm oil was processed in " oil pots " made in the ground. The processing then involved rubbing and squeezing the palm kernel fruits until the oil was extracted.

  9. Strategies For Palm Oil Production Business Success

    The palm oil industry has a bright future, with a projected compound annual growth rate of 5.3% from 2021 to 2026. Investing in a palm oil production business can yield high returns, with an average profit margin of 30%. As the demand for palm oil continues to increase, starting your own palm oil milling business is a lucrative opportunity to ...

  10. Palm Kernel Oil Production Business Plan in Nigeria

    Account Number: 0044056891. After payment, send your name, email address and "Palm Kernel Oil Production Business Plan in Nigeria pdf" to 07033378184. Starting a successful palm kernel oil extraction business in Nigeria. Without a doubt, there is a very high demand for palm kernel oil within and outside Nigeria.

  11. Palm Kernel Oil (Pko) Extraction Business Plan in Nigeria

    We will be selling Palm Kernel cake for animal feeds to 112 feed mills on monthly basis at N 10,000 per sack and in a year that's is N 13,440,000. For more detailed marketing analysis get our template or customized business plan today. OUR TARGET MARKET. SWOT ANALYSIS OF OUR PALM KERNEL OIL BUSINESS PLAN IN NIGERIA.

  12. THE PALM KERNEL OIL EXTRACTING BUSSINESS PLAN

    The raw palm kernel nut is an oil yielding seed which contains between 40% to 55%. of oil, 55% to 40% of cake and 5% of sludge. The raw kernel nuts are bought from the village markets and transported to the factory. On arrival, the bags of kernel nuts are measured and packed ready for processing.

  13. (PDF) PALM OIL BUSINESS PLAN

    1.5 Justification of the Study The business plan will be beneficial in that the study seeks to addresses the challenges in the demand requirements of the country through adopting modern technologies in processing oil palm fruits into two main products; palm oil and palm kernel oil in such quantities that are enough to cut down the deficit and ...

  14. PDF Business Plan for The Establishment of Plantation and Palm Oil

    BUSINESS PLAN FOR AN AFRICAN OIL PALM PLANTATION OF 100 HECTARES AND AN OIL PALM MILL OF 1MT PER HOUR CAPACITY AT BONNY ISLAND, RIVERS STATE, ... in the planting and cultivation as well as the extraction of palm kernel oil. They give quality assistance on processing techniques and other important strategic advice. The most important

  15. How to Start Palm Oil Business In Nigeria

    Ensure the space is cool, safe, and dry. Rent a space or a room where you can store the palm oil while you wait for the right time to sell. Additionally, you will need to purchase kegs or drums to store your oil. Most times, people go for the 25litre yellow kegs.

  16. PDF Palm Kernel Crusher Plant Operation and Economic Feasibility

    The average palm kernel oil extraction rate is about 45.63% and the crusher plant's energy expenditure decreases as mill capacity increases. Although oil production cost varies due to production conditions, palm kernel oil production cost is the lowest among the major oil crops. The profit margin of palm kernel mill increases with plant capacity.

  17. Palm Kernel Oil Production Business Plan in Nigeria

    palm kernel oil production business plan in nigeria Palm Kernel Oil (PKO) is the major raw material for the production of vegetable oil. 90% of what we call groundnut oil in our market is a vegetable oil made of palm kernel Oil (PKO), also PKO is a major product in various production, such as soap making, mayonnaise. margarines, butter, polish ...

  18. Standard/Bankable Palm Oil Business Plan With 3-Years Financial Analysis

    The PALM OIL business plan also has an in-depth analysis of oil palm processing equipment. 3 Years of Automated Financial Model in MS Excel with complete industry research. 4) Product description: All our products are described including other unique features. iii.

  19. Oil Palm Plantation Business Plan [Sample Template]

    A Sample Oil Palm Plantation Business Plan Template. 1. Industry Overview. The oil palm processing industry is an industry that thrives in the African continent and in some parts of Asia. Nigeria is one of the countries in Africa that have loads of players in this industry. Although locals in rural communities run this type of business on a ...

  20. Oil palm in the 2020s and beyond: challenges and solutions

    In terms of annual production, the global oil palm industry is worth about US$ 60 billion, employing 6 million people directly plus an additional 11 million indirectly (Kadandale et al. 2019).Over 81.1 Mt of palm oils were produced globally in 2019-20, of which 72.3 Mt was mesocarp oil (hereafter referred to as 'palm oil') while 8.8 Mt was palm kernel oil (Statisa 2020).

  21. PDF Oil Palm Business Models

    Oil palm business models are defined as the oil palm production system, including the producers, the milling units, the relations between industries and producers, and the intermediate actors if any. ... palm kernel oil at home by heat is also wide spread in West and Central Africa, palm kernel oil is used to produce artisanal soaps and for ...

  22. Indonesia lowers palm oil levy to boost exports

    The Finance Ministry plans to impose a levy amounting to 7.5 percent of the reference price for crude palm oil (CPO) exports, effective three days after the new rule's introduction on Sept. 19.