• Science, Tech, Math ›
  • Chemistry ›

What Is a Variable in Science?

Understanding Variables in a Science Experiment

  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

Variables are an important part of science projects and experiments. What is a variable? Basically, a variable is any factor that can be controlled, changed, or measured in an experiment. Scientific experiments have several types of variables. The independent and dependent variables are the ones usually plotted on a chart or graph, but there are other types of variables you may encounter.

Types of Variables

  • Independent Variable: The independent variable is the one condition that you change in an experiment. Example: In an experiment measuring the effect of temperature on solubility, the independent variable is temperature.
  • Dependent Variable: The dependent variable is the variable that you measure or observe. The dependent variable gets its name because it is the factor that is dependent on the state of the independent variable . Example: In the experiment measuring the effect of temperature on solubility, solubility would be the dependent variable.
  • Controlled Variable: A controlled variable or constant variable is a variable that does not change during an experiment. Example : In the experiment measuring the effect of temperature on solubility, controlled variable could include the source of water used in the experiment, the size and type of containers used to mix chemicals, and the amount of mixing time allowed for each solution.
  • Extraneous Variables: Extraneous variables are "extra" variables that may influence the outcome of an experiment but aren't taken into account during measurement. Ideally, these variables won't impact the final conclusion drawn by the experiment, but they may introduce error into scientific results. If you are aware of any extraneous variables, you should enter them in your lab notebook . Examples of extraneous variables include accidents, factors you either can't control or can't measure, and factors you consider unimportant. Every experiment has extraneous variables. Example : You are conducting an experiment to see which paper airplane design flies longest. You may consider the color of the paper to be an extraneous variable. You note in your lab book that different colors of papers were used. Ideally, this variable does not affect your outcome.

Using Variables in Science Experiment

In a science experiment , only one variable is changed at a time (the independent variable) to test how this changes the dependent variable. The researcher may measure other factors that either remain constant or change during the course of the experiment but are not believed to affect its outcome. These are controlled variables. Any other factors that might be changed if someone else conducted the experiment but seemed unimportant should also be noted. Also, any accidents that occur should be recorded. These are extraneous variables.

Variables and Attributes

In science, when a variable is studied, its attribute is recorded. A variable is a characteristic, while an attribute is its state. For example, if eye color is the variable, its attribute might be green, brown, or blue. If height is the variable, its attribute might be 5 m, 2.5 cm, or 1.22 km.

  • Earl R. Babbie. The Practice of Social Research , 12th edition. Wadsworth Publishing, 2009.
  • What Is a Dependent Variable?
  • What Is an Experiment? Definition and Design
  • Six Steps of the Scientific Method
  • Examples of Independent and Dependent Variables
  • How To Design a Science Fair Experiment
  • The Role of a Controlled Variable in an Experiment
  • Scientific Variable
  • What Are the Elements of a Good Hypothesis?
  • Dependent Variable vs. Independent Variable: What Is the Difference?
  • What Is the Difference Between a Control Variable and Control Group?
  • Independent Variable Definition and Examples
  • Null Hypothesis Examples
  • What Is a Controlled Experiment?
  • DRY MIX Experiment Variables Acronym
  • Scientific Method Vocabulary Terms
  • What Is the Difference Between Hard and Soft Science?

Sciencing_Icons_Science SCIENCE

Sciencing_icons_biology biology, sciencing_icons_cells cells, sciencing_icons_molecular molecular, sciencing_icons_microorganisms microorganisms, sciencing_icons_genetics genetics, sciencing_icons_human body human body, sciencing_icons_ecology ecology, sciencing_icons_chemistry chemistry, sciencing_icons_atomic & molecular structure atomic & molecular structure, sciencing_icons_bonds bonds, sciencing_icons_reactions reactions, sciencing_icons_stoichiometry stoichiometry, sciencing_icons_solutions solutions, sciencing_icons_acids & bases acids & bases, sciencing_icons_thermodynamics thermodynamics, sciencing_icons_organic chemistry organic chemistry, sciencing_icons_physics physics, sciencing_icons_fundamentals-physics fundamentals, sciencing_icons_electronics electronics, sciencing_icons_waves waves, sciencing_icons_energy energy, sciencing_icons_fluid fluid, sciencing_icons_astronomy astronomy, sciencing_icons_geology geology, sciencing_icons_fundamentals-geology fundamentals, sciencing_icons_minerals & rocks minerals & rocks, sciencing_icons_earth scructure earth structure, sciencing_icons_fossils fossils, sciencing_icons_natural disasters natural disasters, sciencing_icons_nature nature, sciencing_icons_ecosystems ecosystems, sciencing_icons_environment environment, sciencing_icons_insects insects, sciencing_icons_plants & mushrooms plants & mushrooms, sciencing_icons_animals animals, sciencing_icons_math math, sciencing_icons_arithmetic arithmetic, sciencing_icons_addition & subtraction addition & subtraction, sciencing_icons_multiplication & division multiplication & division, sciencing_icons_decimals decimals, sciencing_icons_fractions fractions, sciencing_icons_conversions conversions, sciencing_icons_algebra algebra, sciencing_icons_working with units working with units, sciencing_icons_equations & expressions equations & expressions, sciencing_icons_ratios & proportions ratios & proportions, sciencing_icons_inequalities inequalities, sciencing_icons_exponents & logarithms exponents & logarithms, sciencing_icons_factorization factorization, sciencing_icons_functions functions, sciencing_icons_linear equations linear equations, sciencing_icons_graphs graphs, sciencing_icons_quadratics quadratics, sciencing_icons_polynomials polynomials, sciencing_icons_geometry geometry, sciencing_icons_fundamentals-geometry fundamentals, sciencing_icons_cartesian cartesian, sciencing_icons_circles circles, sciencing_icons_solids solids, sciencing_icons_trigonometry trigonometry, sciencing_icons_probability-statistics probability & statistics, sciencing_icons_mean-median-mode mean/median/mode, sciencing_icons_independent-dependent variables independent/dependent variables, sciencing_icons_deviation deviation, sciencing_icons_correlation correlation, sciencing_icons_sampling sampling, sciencing_icons_distributions distributions, sciencing_icons_probability probability, sciencing_icons_calculus calculus, sciencing_icons_differentiation-integration differentiation/integration, sciencing_icons_application application, sciencing_icons_projects projects, sciencing_icons_news news.

  • Share Tweet Email Print
  • Home ⋅
  • Science Fair Project Ideas for Kids, Middle & High School Students ⋅

Ideas for Controlled Variable Science Projects

easy science experiments variables

Science Projects With Three Variables for Kids in Fifth Grade

Many science projects investigate a combination of independent and controlled variables to see what happens as a result - the dependent variable. To get reliable results from your experiments, you change the independent variables carefully and the controlled variables as little as possible; this ensures that only the things you're interested in affect your experimental results.

Does Sugar Dissolve More Quickly in Warm or Cool Water?

Heat a cup of water while allowing another cup of water to remain cool. Dissolve one teaspoon of sugar in each cup of water. The controlled variable would be the number of times and the pressure used to stir the mixture because added motion of the water may or may not dissolve the sugar more quickly whether the water is warm or cool. Record the amount of undissolved sugar in the bottom of the container.

Does a Plant Grow Better in Direct or Indirect Sunlight?

A science project involving plants has controlled variables in the amount of water given to each plant and the amount and kind of soil in which the plant is living. Place one plant in direct sunlight and the other in a shaded area or indoors to conduct the science experiment. Record daily results in the height of the plant.

Will a Baby Bunny Grow Bigger When Fed Rabbit Food or Fresh Vegetables?

Two rabbits, ideally from the same litter, can be used to conduct a classroom experiment. Give each rabbit a different diet: one of only fresh vegetables such as lettuce, carrots and celery; feed the other rabbit pellets from the pet store. The controlled variable in this experiment would be the weight in food each rabbit receives even though the type of food is different. Record the height, weight and length of the two rabbits each week.

Which Will Clean a Penny Faster, Water or Vinegar?

In two glass containers, place one cup of distilled water in one and white vinegar in the other. Carefully drop a dirty penny into each container of liquid and record the changes in the penny's appearance over the course of one week. The controlled variable is in the amount of liquid used to clean each penny.

Related Articles

Science projects with three variables for kids in fifth..., two week science projects, easy science project ideas for 7th grade, grass growth science project, science projects on which fertilizer makes a plant..., science fair projects about growing beans and the life..., measurable science fair ideas, lima bean science projects, biology experiments on bread mold, easy science fair project ideas for a 6th grader, how to grow a plant from a bean as a science project, water evaporation science fair projects, cause & effect science projects, science fair ideas for 5th grade, cell respiration lab ideas, difference between manipulative & responding variable, science fair project on the effect of carbonated drinks..., investigatory project for grade 5, venus flytrap science projects, science fair project for testing different soils with....

  • Science Buddies: Variables in Your Science Fair Project
  • Science Project Ideas for Kids: Variables: Independent, Dependent, Controlled
  • Science Buddies: Dull to Dazzling

Find Your Next Great Science Fair Project! GO

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Types of Variables in Science Experiments

Types of Variables in Science

In a science experiment , a variable is any factor, attribute, or value that describes an object or situation and is subject to change. An experiment uses the scientific method to test a hypothesis and establish whether or not there is a cause and effect relationship between two variables: the independent and dependent variables. But, there are other important types of variables, too, including controlled and confounding variables. Here’s what you need to know, with examples.

The Three Main Types of Variables – Independent, Dependent, and Controlled

An experiment examines whether or not there is a relationship between the independent and dependent variables. The independent variable is the one factor a researcher intentionally changes or manipulates. The dependent variable is the factor that is measured, to see how it responds to the independent variable.

For example , consider an experiment looking to see whether taking caffeine affects how many words you remember from a list. The independent variable is the amount of caffeine you take, while the dependent variable is how many words you remember.

But, there are lot more potential variables you control (and usually measure and record) so you get the truest results from the experiment. The controlled variables are factors you hold steady so they don’t affect the results. In this experiment, examples include the amount and source of the caffeine (coffee? tea? caffeine tablets?), the time between taking the caffeine and recalling the words, the number and order of words on the list, the temperature of the room, and anything else you think might matter. Observing and recording controlled variables might not seem very important, but if someone goes to repeat your experiment and gets different results, it might turn out that a controlled variable has a bigger effect than you suspected!

Confounding Variables

A confounding variable is a variable that has a hidden effect on the results. Sometimes, once you identify a confounding variable, you can turn it into a controlled variable in a later experiment. In the coffee experiment, examples of confounding variables include a subject’s sensitivity to caffeine and the time of day that you conduct the experiment. Age and initial hydration levels are additional factors that may confound the results.

Other Types of Variables

Other types of variables get their names from special properties:

  • Binary variable : A binary variable has exactly two states. Examples include on/off and heads/tails.
  • Categorical or qualitative variable : A categorical or qualitative variable is one that does not have a numerical value. For example, if you compare the health benefits of walking, riding a bike, or driving a car, the modes of transport are descriptive and not numerical.
  • Composite variable : A composite variable is a combination of multiple variable. Researchers use these for improving ease of data reporting. For example, a “good” water quality score includes samples that are low in turbidity, bacteria, heavy metals, and pesticides.
  • Continuous variable : A continuous variable has an infinite number of values within a set range. For example, the height of a building ranges anywhere between zero and some maximum. When you measure the value, there is some level of error, often from rounding.
  • Discrete variable : In contrast to a continuous variable, a discrete variable has a finite number of exact values. For example, a light is either on or off. The number of people in a room has an exact value (4 and never 3.91).
  • Latent variable : A latent variable is one you can’t measure directly. For example, you can’t tell the salt tolerance of a plant, but can infer it by whether leaves appear healthy.
  • Nominal variable : A nominal variable is a type of qualitative variable, where the attribute has a name or category instead of a number. For example, colors and brand names are nominal variables.
  • Numeric or quantitative variable : This is a variable that has a numerical value. Length and mass are good examples.
  • Ordinal variable : An ordinal variable has a ranked value. For example, rating a factor as bad, good, better, or best illustrates an ordinal system.
  • Babbie, Earl R. (2009). The Practice of Social Research (12th ed.). Wadsworth Publishing. ISBN 0-495-59841-0.
  • Creswell, John W. (2018). Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research (6th ed.). Pearson. ISBN 978-0134519364.
  • Dodge, Y. (2008). The Concise Encyclopedia of Statistics. Springer Reference. ISBN 978-0397518371.
  • Given, Lisa M. (2008). The SAGE Encyclopedia of Qualitative Research Methods . Los Angeles: SAGE Publications. ISBN 978-1-4129-4163-1.
  • Kuhn, Thomas S. (1961). “The Function of Measurement in Modern Physical Science”. Isis . 52 (2): 161–193 (162). doi: 10.1086/349468

Related Posts

COMMENTS

  1. Ideas for Controlled Variable Science Projects

    Many science projects investigate a combination of independent and controlled variables to see what happens as a result - the dependent variable.

  2. 9 Great Ways to Teach Variables in Science Experiments

    In this blog post, we’ll explore the importance of teaching variables in science experiments, delve into the distinctions between independent, dependent, and controlled variables, and provide creative ideas …

  3. Variables in Science Experiments: A Guide for Kids

    In science, a variable is something that can change or be changed during an experiment. It is an important factor that scientists consider to understand how different things affect the outcome of the experiment. Think …

  4. Science Projects (Search: variables)

    Here's a sports science project that shows you how to use correlation analysis to choose the best batting statistic for predicting run-scoring ability. You'll learn how to use a spreadsheet to …

  5. What are Variables?

    How to use dependent, independent, and controlled variables in your science experiments.

  6. Types of Variables in Science Experiments

    An experiment uses the scientific method to test a hypothesis and establish whether or not there is a cause and effect relationship between two variables: the independent and dependent variables. But, there are other …